36 research outputs found

    Aerosol growth in CO2 absorption with MEA, modelling and comparison with experimental results

    Get PDF
    A new and improved aerosol model has been developed and tested against experimental data. An e-NRTL equilibrium model for MEA was extended to cover sulphuric acid containing droplets and validated against new eboulliometer data in this work. The droplet model predicts emissions without demister installed in the absorber, within ± 20% and with demister, 30-80% of the measured emissions. The model predicts well the change in emissions from NG-based to coal-based exhaust. Under conditions reported in this work, the droplet number concentration was found to have a small effect on predicted emissions because of more MEA gas-phase depletion with high droplet concentrations and slower growth. The effects counteract each other. With significant MEA depletion in the gas phase, the emissions are largely determined by the mass transfer rate from the bulk liquid. The initial droplet sulphuric acid concentration had a minor effect on the outlet droplet size distribution. The effect on MEA emissions was significant: the emissions went up with increased initial sulphuric acid concentration. The effect of sulphuric acid was stronger for low inlet gas CO2 concentration (NG) than for coal-based exhaust. The increase in emissions is believed to be caused by the increase in overall driving force for MEA between bulk liquid phase and droplets. The log-normal model does not catch small inlet droplet sizes in the range below 20-30nm. These droplet sizes hardly grow in the absorber and water wash and in the total emissions, these droplets have a negligible impact on emissions.publishedVersio

    Reliability of an injury scoring system for horses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The risk of injuries is of major concern when keeping horses in groups and there is a need for a system to record external injuries in a standardised and simple way. The objective of this study, therefore, was to develop and validate a system for injury recording in horses and to test its reliability and feasibility under field conditions.</p> <p>Methods</p> <p>Injuries were classified into five categories according to severity. The scoring system was tested for intra- and inter-observer agreement as well as agreement with a 'golden standard' (diagnosis established by a veterinarian). The scoring was done by 43 agricultural students who classified 40 photographs presented to them twice in a random order, 10 days apart. Attribute agreement analysis was performed using Kendall's coefficient of concordance (Kendall's <it>W</it>), Kendall's correlation coefficient (Kendall's τ) and Fleiss' kappa. The system was also tested on a sample of 100 horses kept in groups where injury location was recorded as well.</p> <p>Results</p> <p>Intra-observer agreement showed Kendall's <it>W </it>ranging from 0.94 to 0.99 and 86% of observers had kappa values above 0.66 (substantial agreement). Inter-observer agreement had an overall Kendall's <it>W </it>of 0.91 and the mean kappa value was 0.59 (moderate). Agreement for all observers versus the 'golden standard' had Kendall's τ of 0.88 and the mean kappa value was 0.66 (substantial). The system was easy to use for trained persons under field conditions. Injuries of the more serious categories were not found in the field trial.</p> <p>Conclusion</p> <p>The proposed injury scoring system is easy to learn and use also for people without a veterinary education, it shows high reliability, and it is clinically useful. The injury scoring system could be a valuable tool in future clinical and epidemiological studies.</p

    24-h sheltering behaviour of individually kept horses during Swedish summer weather

    Get PDF
    Provision of shelter for horses kept on summer pasture is rarely considered in welfare guidelines, perhaps because the benefits of shelter in warm conditions are poorly documented scientifically. For cattle, shade is a valued resource during summer and can mitigate the adverse effects of warm weather on well-being and performance. We found in a previous study that horses utilized shelters frequently in summer. A shelter with a roof and closed on three sides (shelter A) was preferred and can reduce insect pressure whereas a shelter with roof and open on three sides was not utilized. However, shelter A restricts the all-round view of a horse, which may be important for horses as flight animals. Therefore, we studied whether a shelter with roof, where only the upper half of the rear wall was closed (shelter B), would be utilized while maintaining insect protection properties and satisfying the horses’ sense for security. A third shelter was offered with walls but no roof (shelter C) to evaluate whether the roof itself is an important feature from the horse’s perspective. Eight Warmblood horses were tested each for 2 days, kept individually for 24 h in two paddocks with access to shelters A and B, or shelters A and C, respectively. Shelter use was recorded continuously during the night (1800–2400 h, 0200–0600 h) and the following day (0900–1600 h), and insect defensive behaviour (e.g., tail swish) in instantaneous scan samples at 5-min intervals during daytime

    Preparation of Hydrogen Permeable Membrane Using Nanoparticles Electrophoresis Technique

    Get PDF
    Hydrogen perm-selective membranes composed of Pd nanoparticles were investigated. The nanoparticles were prepared by ultrasonic reduction from PdII ions, and then deposited on a substrate disc with electrophoresis technique. These electrophoretic membranes have shown high performance of perm-selectivity for H2 with separation factor α = 3.85, under room temperature

    Inference of conversion and purity for ETBE reactive distillation

    Get PDF
    Reactive distillation (RD), an unconventional and attractive technique, has been applied in fuel ether production. A typical application of RD is the synthesis of the widely used methyl tert-butyl ether (MTBE). RD has also been found to have potential to produce high quality ethyl tert-butyl ether (ETBE), a potential alternative to MTBE. A RD process integrates conventional reaction and separation into a single unit, resulting in extra complexity and dual process objectives, i.e. maximization of reactant conversion and purity of products. The conversion and the purity are thus important variables to be controlled in RD of ETBE. Unfortunately, both of them are not economically and reliably available for closed-loop control. This study aims to develop an effective method to infer the conversion and the purity from multiple temperature measurements that are easily available on-line and in real time. Nonlinear inferential models are recommended for ETBE synthesis with a ten-stage pilot scale RD column. The models are two-variable third-order regressive models, in which the temperature measurements of the reboiler and the bottom reactive section are employed. Experimental design, model identification, and model testing are also investigated

    Gaussian Process-Based Inferential Control System

    No full text

    Aerosol growth in CO2 absorption with MEA, modelling and comparison with experimental results

    No full text
    A new and improved aerosol model has been developed and tested against experimental data. An e-NRTL equilibrium model for MEA was extended to cover sulphuric acid containing droplets and validated against new eboulliometer data in this work. The droplet model predicts emissions without demister installed in the absorber, within ± 20% and with demister, 30-80% of the measured emissions. The model predicts well the change in emissions from NG-based to coal-based exhaust. Under conditions reported in this work, the droplet number concentration was found to have a small effect on predicted emissions because of more MEA gas-phase depletion with high droplet concentrations and slower growth. The effects counteract each other. With significant MEA depletion in the gas phase, the emissions are largely determined by the mass transfer rate from the bulk liquid. The initial droplet sulphuric acid concentration had a minor effect on the outlet droplet size distribution. The effect on MEA emissions was significant: the emissions went up with increased initial sulphuric acid concentration. The effect of sulphuric acid was stronger for low inlet gas CO2 concentration (NG) than for coal-based exhaust. The increase in emissions is believed to be caused by the increase in overall driving force for MEA between bulk liquid phase and droplets. The log-normal model does not catch small inlet droplet sizes in the range below 20-30nm. These droplet sizes hardly grow in the absorber and water wash and in the total emissions, these droplets have a negligible impact on emissions
    corecore