2,631 research outputs found

    Association is not causation: treatment effects cannot be estimated from observational data in heart failure

    Get PDF
    Aims: Treatment ‘effects’ are often inferred from non-randomized and observational studies. These studies have inherent biases and limitations, which may make therapeutic inferences based on their results unreliable. We compared the conflicting findings of these studies to those of prospective randomized controlled trials (RCTs) in relation to pharmacological treatments for heart failure (HF). Methods and results: We searched Medline and Embase to identify studies of the association between non-randomized drug therapy and all-cause mortality in patients with HF until 31 December 2017. The treatments of interest were: angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, mineralocorticoid receptor antagonists (MRAs), statins, and digoxin. We compared the findings of these observational studies with those of relevant RCTs. We identified 92 publications, reporting 94 non-randomized studies, describing 158 estimates of the ‘effect’ of the six treatments of interest on all-cause mortality, i.e. some studies examined more than one treatment and/or HF phenotype. These six treatments had been tested in 25 RCTs. For example, two pivotal RCTs showed that MRAs reduced mortality in patients with HF with reduced ejection fraction. However, only one of 12 non-randomized studies found that MRAs were of benefit, with 10 finding a neutral effect, and one a harmful effect. Conclusion: This comprehensive comparison of studies of non-randomized data with the findings of RCTs in HF shows that it is not possible to make reliable therapeutic inferences from observational associations. While trials undoubtedly leave gaps in evidence and enrol selected participants, they clearly remain the best guide to the treatment of patients

    Tricyclic pyrone compounds prevent aggregation and reverse cellular phenotypes caused by expression of mutant huntingtin protein in striatal neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion mutation in the coding region of a novel gene. The mechanism of HD is unknown. Most data suggest that polyglutamine-mediated aggregation associated with expression of mutant huntingtin protein (mhtt) contributes to the pathology. However, recent studies have identified early cellular dysfunctions that preclude aggregate formation. Suppression of aggregation is accepted as one of the markers of successful therapeutic approaches. Previously, we demonstrated that tricyclic pyrone (TP) compounds efficiently inhibited formation of amyloid-β (Aβ) aggregates in cell and mouse models representing Alzheimer's Disease (AD). In the present study, we aimed to determine whether TP compounds could prevent aggregation and restore early cellular defects in primary embryonic striatal neurons from animal model representing HD.</p> <p>Results</p> <p>TP compounds effectively inhibit aggregation caused by mhtt in neurons and glial cells. Treatment with TP compounds also alleviated cholesterol accumulation and restored clathrin-independent endocytosis in HD neurons.</p> <p>Conclusion</p> <p>We have found that TP compounds not only blocked mhtt-induced aggregation, but also alleviated early cellular dysfunctions that preclude aggregate formation. Our data suggest TP molecules may be used as lead compounds for prevention or treatment of multiple neurodegenerative diseases including HD and AD.</p

    Palliative care needs in patients hospitalized with heart failure (PCHF) study: rationale and design

    Get PDF
    Abstract Aims The primary aim of this study is to provide data to inform the design of a randomized controlled clinical trial (RCT) of a palliative care (PC) intervention in heart failure (HF). We will identify an appropriate study population with a high prevalence of PC needs defined using quantifiable measures. We will also identify which components a specific and targeted PC intervention in HF should include and attempt to define the most relevant trial outcomes. Methods An unselected, prospective, near-consecutive, cohort of patients admitted to hospital with acute decompensated HF will be enrolled over a 2-year period. All potential participants will be screened using B-type natriuretic peptide and echocardiography, and all those enrolled will be extensively characterized in terms of their HF status, comorbidity, and PC needs. Quantitative assessment of PC needs will include evaluation of general and disease-specific quality of life, mood, symptom burden, caregiver burden, and end of life care. Inpatient assessments will be performed and after discharge outpatient assessments will be carried out every 4 months for up to 2.5 years. Participants will be followed up for a minimum of 1 year for hospital admissions, and place and cause of death. Methods for identifying patients with HF with PC needs will be evaluated, and estimates of healthcare utilisation performed. Conclusion By assessing the prevalence of these needs, describing how these needs change over time, and evaluating how best PC needs can be identified, we will provide the foundation for designing an RCT of a PC intervention in HF
    corecore