289 research outputs found

    Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity

    Get PDF
    Virus infection of mammalian cells is sensed by pattern recognition receptors and leads to an innate immune response that restricts virus replication and induces adaptive immunity. In response, viruses have evolved many countermeasures that enable them to replicate and be transmitted to new hosts, despite the host innate immune response. Poxviruses, such as vaccinia virus (VACV), have large DNA genomes and encode many proteins that are dedicated to host immune evasion. Some of these proteins are secreted from the infected cell, where they bind and neutralize complement factors, interferons, cytokines and chemokines. Other VACV proteins function inside cells to inhibit apoptosis or signalling pathways that lead to the production of interferons and pro-inflammatory cytokines and chemokines. In this review, these VACV immunomodulatory proteins are described and the potential to create more immunogenic VACV strains by manipulation of the gene encoding these proteins is discussed

    Myrtucommulone from Myrtus communis exhibits potent anti-inflammatory effectiveness in vivo.

    Get PDF
    Myrtucommulone a nonprenylated acylphloroglucinol contained in the leaves of myrtle (Myrtus communis), has been reported to suppress the biosynthesis of eicosanoids by inhibition of 5-lipoxygenase and cyclooxygenase-1 in vitro and to inhibit the release of elastase and the formation of reactive oxygen species in activated polymorphonuclear leukocytes. Here, in view of the ability of MC to suppress typical proinflammatory cellular responses in vitro, we have investigated the effects of MC in in vivo models of inflammation. MC was administered to mice intraperitoneally, and paw edema and pleurisy were induced by the subplantar and intrapleural injection of carrageenan, respectively. MC (0.5, 1.5, and 4.5 mg/kg i.p.) reduced the development of mouse carrageenan-induced paw edema in a dose-dependent manner. Moreover, MC (4.5 mg/kg i.p. 30 min before and after carrageenan) exerted anti-inflammatory effects in the pleurisy model. In particular, 4 h after carrageenan injection in the pleurisy model, MC reduced: 1) the exudate volume and leukocyte numbers; 2) lung injury (histological analysis) and neutrophil infiltration (myeloperoxidase activity); 3) the lung intercellular adhesion molecule-1 and P-selectin immunohistochemical localization; 4) the cytokine levels (tumor necrosis factor-Ξ± and interleukin-1 Ξ² in the pleural exudate and their immunohistochemical localization in the lung; 5) the leukotriene B 4, but not prostaglandin E2, levels in the pleural exudates; and 6) lung peroxidation (thiobarbituric acid-reactant substance) and nitrotyrosine and poly (ADP-ribose) immunostaining. In conclusion, our results demonstrate that MC exerts potent anti-inflammatory effects in vivo and offer a novel therapeutic approach for the management of acute inflammation. Copyright Β© 2009 by The American Society for Pharmacology and Experimental Therapeutics

    Ethical issues associated with in-hospital emergency from the medical emergency team's perspective: a national survey

    Get PDF
    Medical Emergency Teams (METs) are frequently involved in ethical issues associated to in-hospital emergencies, like decisions about end-of-life care and intensive care unit (ICU) admission. MET involvement offers both advantages and disadvantages, especially when an immediate decision must be made. We performed a survey among Italian intensivists/anesthesiologists evaluating MET's perspective on the most relevant ethical aspects faced in daily practice

    The processing of actions and-action words in Amyotrophic Lateral Sclerosis patients

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with prime conse- quences on the motor function and concomitant cognitive changes, most frequently in the domain of executive functions. Moreover, poorer performance with action-verbs versus object-nouns has been reported in ALS patients, raising the hypothesis that the motor dysfunction deteriorates the semantic representation of actions. Using action-verbs and manipulable-object nouns sharing semantic relationship with the same motor represen- tations, the verb-noun difference was assessed in a group of 21 ALS-patients with severely impaired motor behavior, and compared with a normal sample's performance. ALS-group performed better on nouns than verbs, both in production (action and object naming) and comprehension (word-picture matching). This observation implies that the interpretation of the verb-noun difference in ALS cannot be accounted by the relatedness of verbs to motor representations, but has to consider the role of other semantic and/or morpho- phonological dimensions that distinctively define the two grammatical classes. More- over, this difference in the ALS-group was not greater than the noun-verb difference in the normal sample. The mental representation of actions also involves an executive-control component to organize, in logical/temporal order, the individual motor events (or sub- goals) that form a purposeful action. We assessed this ability with action sequencing tasks, requiring participants to re-construct a purposeful action from the scrambled pre- sentation of its constitutive motor events, shown in the form of photographs or short sentences. In those tasks, ALS-group's performance was significantly poorer than controls'. Thus, the executive dysfunction manifested in the sequencing deficit ebut not the selec- tive verb deficite appears as a consistent feature of the cognitive profile associated with LS. We suggest that ALS can offer a valuable model to study the relationship between (frontal) motor centers and the executive-control machinery housed in the frontal brain, and the implications of executive dysfunctions in tasks such as action processing

    Relative yield of wheat in coexistence with concurrent plants as indicator of competitiveness.

    Get PDF
    One of the factors that limit the yield of wheat is the weed competition, being the competitive potential of plants affected by their morphophysiological characteristics. The objective of this study was to determine the competitiveness of wheat when in coexistence with Italian ryegrass (Lolium multiflorum) and radish (Raphanus sativus) competitive plants or with wheat as simulator competition plant. There were realized four experiments in the greenhouse of the Agricultural Department of Environmental Sciences of the UFSM, Campus of Frederico Westphalen ? RS, during July to September, 2012. The treatments were arranged in a replacement series, in the proportions of 100:00 (wheat monoculture), 75:25, 50:50, 25:75 and 100:00 (competitor plant monoculture) for wheat plants (cv. Fundacep Cristalino) and for Italian ryegrass, radish and wheat (cv. BRS Guamirim) as competitor plants. The wheat is more competitive than Italian ryegrass in initial coexistence, even in the smallest proportion of plants. The radish when intercropped with wheat demonstrates similar competitive potential for environmental resources to the crop. There is mutual beneficial effect when wheat cultivars Fundacep Cristalino and BRS Guamirim coexisted, and each cultivar seems to have mechanism to avoid competition

    Characterization of the pathophysiological role of CD47 in uveal melanoma

    Get PDF
    Uveal melanoma (UM) represents the most frequent primary intraocular tumor, however, limited therapeutic options are still available. We have previously shown that cluster of differentiation 47 (CD47) is significantly upregulated in UM cells following inflammatory stimuli and that it represents a predictor of disease progression. Here, we aimed to better characterize the pathophysiological role of CD47 in UM. We show that CD47 is not modulated at different cancer stages, although patients with the lowest expression of CD47 show significant better progression-free survival, after correcting for the presence of BAP1, GNAQ, and GNA11 mutations. By stratifying patients based on the expression of CD47 in the tumor, we observed that patients with high levels of CD47 have a significant increase in immune score as compared to patients with low levels of CD47. In particular, deconvolution analysis of infiltrating immune cell populations revealed that a significantly higher number of CD4+ and CD8+ T cells can be found in patients with high CD47 levels, with the most enriched populations being the Th2, Treg, and CD8+ Tcm cells. We also show that a large number of transcripts are significantly modulated between the groups of patients with high and low levels of CD47, with a significant enrichment of interferon IFN-alpha regulated genes. The results from this study may propel the development of anti-CD47 therapies for UM patients

    Bat IFITM3 restriction depends on S-palmitoylation and a polymorphic site within the CD225 domain

    Get PDF
    Host interferon-induced transmembrane proteins (IFITMs) are broad-spectrum antiviral restriction factors. Of these, IFITM3 potently inhibits viruses that enter cells through acidic endosomes, many of which are zoonotic and emerging viruses with bats (order Chiroptera) as their natural hosts. We previously demonstrated that microbat IFITM3 is antiviral. Here, we show that bat IFITMs are characterized by strong adaptive evolution and identify a highly variable and functionally important site-codon 70-within the conserved CD225 domain of IFITMs. Mutation of this residue in microbat IFITM3 impairs restriction of representatives of four different virus families that enter cells via endosomes. This mutant shows altered subcellular localization and reduced S-palmitoylation, a phenotype copied by mutation of conserved cysteine residues in microbat IFITM3. Furthermore, we show that microbat IFITM3 is S-palmitoylated on cysteine residues C71, C72, and C105, mutation of each cysteine individually impairs virus restriction, and a triple C71A-C72A-C105A mutant loses all restriction activity, concomitant with subcellular re-localization of microbat IFITM3 to Golgi-associated sites. Thus, we propose that S-palmitoylation is critical for Chiropteran IFITM3 function and identify a key molecular determinant of IFITM3 S-palmitoylation

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    Pharmacological inhibition of leukotrienes in an animal model of bleomycin-induced acute lung injury

    Get PDF
    Leukotrienes are increased locally in idiopathic pulmonary fibrosis. Furthermore, a role for these arachidonic acid metabolites has been thoroughly characterized in the animal bleomycin model of lung fibrosis by using different gene knock-out settings. We investigated the efficacy of pharmacological inhibition of leukotrienes activity in the development of bleomycin-induced lung injury by comparing the responses in wild-type mice with mice treated with zileuton, a 5-lipoxygenase inhibitor and MK-571, a cys-leukotrienes receptor antagonist. Mice were subjected to intra-tracheal administration of bleomycin or saline and were assigned to receive either MK-571 at 1 mg/Kg or zileuton at 50 mg/Kg daily. One week after bleomycin administration, BAL cell counts, lung histology with van Gieson for collagen staining and immunohistochemical analysis for myeloperoxidase, IL-1 and TNF-Ξ± were performed. Following bleomycin administration both MK-571 and zileuton treated mice exhibited a reduced degree of lung damage and inflammation when compared to WT mice as shown by the reduction of:(i) loss of body weight, (ii) mortality rate, (iii) lung infiltration by neutrophils (myeloperoxidase activity, BAL total and differential cell counts), (iv) lung edema, (v) histological evidence of lung injury and collagen deposition, (vi) lung myeloperoxidase, IL-1 and TNF-Ξ± staining. This is the first study showing that the pharmacological inhibition of leukotrienes activity attenuates bleomycin-induced lung injury in mice. Given our results as well as those coming from genetic studies, it might be considered meaningful to trial this drug class in the treatment of pulmonary fibrosis, a disease that still represents a major challenge to medical treatment
    • …
    corecore