61 research outputs found

    The first archaic Homo from Taiwan

    Get PDF
    Recent studies of an increasing number of hominin fossils highlight regional and chronological diversities of archaic Homo in the Pleistocene of eastern Asia. However, such a realization is still based on limited geographical occurrences mainly from Indonesia, China and Russian Altai. Here we describe a newly discovered archaic Homo mandible from Taiwan (Penghu 1), which further increases the diversity of Pleistocene Asian hominins. Penghu 1 revealed an unexpectedly late survival (younger than 450 but most likely 190-10 thousand years ago) of robust, apparently primitive dentognathic morphology in the periphery of the continent, which is unknown among the penecontemporaneous fossil records from other regions of Asia except for the mid-Middle Pleistocene Homo from Hexian, Eastern China. Such patterns of geographic trait distribution cannot be simply explained by clinal geographic variation of Homo erectus between northern China and Java, and suggests survival of multiple evolutionary lineages among archaic hominins before the arrival of modern humans in the region.This study was supported by grants from the Ministry of Science and Technology, Taiwan (102-2116-M-178-004-) to C.-H.C., the Japan Society for the Promotion of Science (No. 24247044) to Y.K., and Australian Research Council (DP110101415) to R.G

    The spatial extent of tephra deposition and environmental impacts from the 1912 Novarupta eruption

    Get PDF
    The eruption of Novarupta within the Katmai Volcanic Cluster, south-west Alaska, in June 1912 was the most voluminous eruption of the twentieth century but the distal distribution of tephra deposition is inadequately quantified. We present new syntheses of published tephrostratigraphic studies and a large quantity of previously un-investigated historical records. For the first time, we apply a geostatistical technique, indicator kriging, to integrate and interpolate such data. Our results show evidence for tephra deposition across much of Alaska, Yukon, the northern Pacific, western British Columbia and northwestern Washington. The most distal tephra deposition was observed around 2,500 km downwind from the volcano. Associated with tephra deposition are many accounts of acid deposition and consequent impacts on vegetation and human health. Kriging offers several advantages as a means to integrate and present such data. Future eruptions of a scale similar to the 1912 event have the potential to cause widespread disruption. Historical records of tephra deposition extend far beyond the limit of deposition constrained by tephrostratigraphic records. The distal portion of tephra fallout deposits is rarely adequately mapped by tephrostratigraphy alone; contemporaneous reports of fallout can provide important constraints on the extent of impacts following large explosive eruptions
    • ā€¦
    corecore