67 research outputs found

    Neurologic phenotype of Schimke immuno-osseous dysplasia and neurodevelopmental expression of SMARCAL1

    No full text
    Schimke immuno-osseous dysplasia (OMIM 242900) is an uncommon autosomal-recessive multisystem disease caused by mutations in SMARCAL1 (swi/snf-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), a gene encoding a putative chromatin remodeling protein. Neurologic manifestations identified to date relate to enhanced atherosclerosis and cerebrovascular disease. Based on a clinical survey, we determined that half of Schimke immuno-osseous dysplasia patients have a small head circumference, and 15% have social, language, motor, or cognitive abnormalities. Postmortem examination of 2 Schimke immuno-osseous dysplasia patients showed low brain weights and subtle brain histologic abnormalities suggestive of perturbed neuron-glial migration such as heterotopia, irregular cortical thickness, incomplete gyral formation, and poor definition of cortical layers. We found that SMARCAL1 is highly expressed in the developing and adult mouse and human brain, including neural precursors and neuronal lineage cells. These observations suggest that SMARCAL1 deficiency may influence brain development and function in addition to its previously recognized effect on cerebral circulation

    A Low Cost Concept for Data Acquisition Systems Applied to Decentralized Renewable Energy Plants

    Get PDF
    The present paper describes experiences of the use of monitoring and data acquisition systems (DAS) and proposes a new concept of a low cost DAS applied to decentralized renewable energy (RE) plants with an USB interface. The use of such systems contributes to disseminate these plants, recognizing in real time local energy resources, monitoring energy conversion efficiency and sending information concerning failures. These aspects are important, mainly for developing countries, where decentralized power plants based on renewable sources are in some cases the best option for supplying electricity to rural areas. Nevertheless, the cost of commercial DAS is still a barrier for a greater dissemination of such systems in developing countries. The proposed USB based DAS presents a new dual clock operation philosophy, in which the acquisition system contains two clock sources for parallel information processing from different communication protocols. To ensure the low cost of the DAS and to promote the dissemination of this technology in developing countries, the proposed data acquisition firmware and the software for USB microcontrollers programming is a free and open source software, executable in the Linux and Windows® operating systems

    Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering

    Get PDF
    A rice tiller is a specialized grain-bearing branch that contributes greatly to grain yield. The MONOCULM 1 (MOC1) gene is the first identified key regulator controlling rice tiller number; however, the underlying mechanism remains to be elucidated. Here we report a novel rice gene, Tillering and Dwarf 1 (TAD1), which encodes a co-activator of the anaphase-promoting complex (APC/C), a multi-subunit E3 ligase. Although the elucidation of co-activators and individual subunits of plant APC/C involved in regulating plant development have emerged recently, the understanding of whether and how this large cell-cycle machinery controls plant development is still very limited. Our study demonstrates that TAD1 interacts with MOC1, forms a complex with OsAPC10 and functions as a co-activator of APC/C to target MOC1 for degradation in a cell-cycle-dependent manner. Our findings uncovered a new mechanism underlying shoot branching and shed light on the understanding of how the cell-cycle machinery regulates plant architecture

    Introduction and Motivation

    No full text

    Bus-aware multicore WCET analysis through TDMA offset bounds

    No full text
    10.1109/ECRTS.2011.9Proceedings - Euromicro Conference on Real-Time Systems3-1

    Plant-specific regulation of replication protein A2 (OsRPA2) from rice during the cell cycle and in response to ultraviolet light exposure

    No full text
    DNA replication is a process that is highly conserved among eukaryotes. Nonetheless, little is known about the proteins involved in it in plants. Replication protein A (RPA) is a heterotrimeric, single-stranded DNA-binding protein with several functions in DNA metabolism in humans and yeast and supposedly also in plants. Here we report on the regulation of OsRPA2, the 32-kDa subunit of RPA from rice (Oryza sativa L.). We found conserved regulation mechanisms at the level of gene expression between animal and plant RPA2 genes and distinct features of OsRPA2 regulation at the level of protein expression. Unlike in animals or in yeast, protein abundance in rice was regulated in a cell cycle phase-specific manner and was altered after UV-C light exposure. On the other hand, posttranslational modification through phosphorylation did not appear to play a pivotal role in rice as it does in animal cells. Our results indicate that plant-specific mechanisms of regulation have evolved for RPA2 within the generally well-conserved process of DNA replication, suggesting specific requirements for regulation of DNA metabolism in plants as compared to other eukaryotes

    Organisatorische und technische Entwicklung in der Bauwirtschaft und die Qualifizierung der Poliere Schlussbericht

    No full text
    Available from TIB Hannover: F95B1623+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEBundesministerium fuer Forschung und Technologie (BMFT), Bonn (Germany)DEGerman

    A unified WCET analysis framework for multi-core platforms

    No full text
    10.1109/RTAS.2012.26Real-Time Technology and Applications - Proceedings99-108PRAS
    corecore