743 research outputs found

    Factors Affecting EWS-FLI1 Activity in Ewing's Sarcoma

    Get PDF
    Ewing's sarcoma family tumors (ESFT) are characterized by specific chromosomal translocations, which give rise to EWS-ETS chimeric proteins. These aberrant transcription factors are the main pathogenic drivers of ESFT. Elucidation of the factors influencing EWS-ETS expression and/or activity will guide the development of novel therapeutic agents against this fatal disease

    Electronically highly cubic conditions for Ru in alpha-RuCl3

    Full text link
    We studied the local Ru 4d electronic structure of alpha-RuCl3 by means of polarization dependent x-ray absorption spectroscopy at the Ru-L2,3 edges. We observed a vanishingly small linear dichroism indicating that electronically the Ru 4d local symmetry is highly cubic. Using full multiplet cluster calculations we were able to reproduce the spectra excellently and to extract that the trigonal splitting of the t2g orbitals is -12 ±10\pm10 meV, i.e. negligible as compared to the Ru 4d spin-orbit coupling constant. Consistent with our magnetic circular dichroism measurements, we found that the ratio of the orbital and spin moments is 2.0, the value expected for a Jeff = 1/2 ground state. We have thus shown that as far as the Ru 4d local properties are concerned, alpha-RuCl3 is an ideal candidate for the realization of Kitaev physics

    Mid-infrared imaging- and spectro-polarimetric subarcsecond observations of NGC 1068

    Get PDF
    We present sub-arcsecond 7.5-13 μ\mum imaging- and spectro-polarimetric observations of NGC 1068 using CanariCam on the 10.4-m Gran Telescopio CANARIAS. At all wavelengths, we find: (1) A 90 ×\times 60 pc extended polarized feature in the northern ionization cone, with a uniform \sim44^{\circ} polarization angle. Its polarization arises from dust and gas emission in the ionization cone, heated by the active nucleus and jet, and further extinguished by aligned dust grains in the host galaxy. The polarization spectrum of the jet-molecular cloud interaction at \sim24 pc from the core is highly polarized, and does not show a silicate feature, suggesting that the dust grains are different from those in the interstellar medium. (2) A southern polarized feature at \sim9.6 pc from the core. Its polarization arises from a dust emission component extinguished by a large concentration of dust in the galaxy disc. We cannot distinguish between dust emission from magnetically aligned dust grains directly heated by the jet close to the core, and aligned dust grains in the dusty obscuring material surrounding the central engine. Silicate-like grains reproduce the polarized dust emission in this feature, suggesting different dust compositions in both ionization cones. (3) An upper limit of polarization degree of 0.3 per cent in the core. Based on our polarization model, the expected polarization of the obscuring dusty material is \lesssim0.1 per cent in the 8-13 μ\mum wavelength range. This low polarization may be arising from the passage of radiation through aligned dust grains in the shielded edges of the clumps.Comment: 17 pages, 10 figures, accepted for publication at MNRA

    Near-Infrared Polarimetric Adaptive Optics Observations of NGC 1068: A torus created by a hydromagnetic outflow wind

    Full text link
    We present J' and K' imaging linear polarimetric adaptive optics observations of NGC 1068 using MMT-Pol on the 6.5-m MMT. These observations allow us to study the torus from a magnetohydrodynamical (MHD) framework. In a 0.5" (30 pc) aperture at K', we find that polarisation arising from the passage of radiation from the inner edge of the torus through magnetically aligned dust grains in the clumps is the dominant polarisation mechanism, with an intrinsic polarisation of 7.0%±\pm2.2%. This result yields a torus magnetic field strength in the range of 4-82 mG through paramagnetic alignment, and 13920+11^{+11}_{-20} mG through the Chandrasekhar-Fermi method. The measured position angle (P.A.) of polarisation at K' is found to be similar to the P.A. of the obscuring dusty component at few parsec scales using infrared interferometric techniques. We show that the constant component of the magnetic field is responsible for the alignment of the dust grains, and aligned with the torus axis onto the plane of the sky. Adopting this magnetic field configuration and the physical conditions of the clumps in the MHD outflow wind model, we estimate a mass outflow rate \le0.17 M_{\odot} yr1^{-1} at 0.4 pc from the central engine for those clumps showing near-infrared dichroism. The models used were able to create the torus in a timescale of \geq105^{5} yr with a rotational velocity of \leq1228 km s1^{-1} at 0.4 pc. We conclude that the evolution, morphology and kinematics of the torus in NGC 1068 can be explained within a MHD framework.Comment: 14 pages, 4 figures, Accepted by MNRA

    Femtoscale magnetically induced lattice distortions in multiferroic TbMnO3

    Full text link
    Magneto-electric multiferroics exemplified by TbMnO3 possess both magnetic and ferroelectric long-range order. The magnetic order is mostly understood, whereas the nature of the ferroelectricity has remained more elusive. Competing models proposed to explain the ferroelectricity are associated respectively with charge transfer and ionic displacements. Exploiting the magneto-electric coupling, we use an electric field to produce a single magnetic domain state, and a magnetic field to induce ionic displacements. Under these conditions, interference charge-magnetic X-ray scattering arises, encoding the amplitude and phase of the displacements. When combined with a theoretical analysis, our data allow us to resolve the ionic displacements at the femtoscale, and show that such displacements make a significant contribution to the zero-field ferroelectric moment.Comment: This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science VOL 333, (2011), doi:10.1126/science.120808

    Orbital Ordering Structures in (Nd,Pr)0.5Sr0.5MnO3 Manganite Thin Films on Perovskite (011) Substrates

    Full text link
    Structural study of orbital-ordered manganite thin films has been conducted using synchrotron radiation, and a ground state electronic phase diagram is made. The lattice parameters of four manganite thin films, Nd0.5Sr0.5MnO3 (NSMO) or Pr0.5Sr0.5MnO3 (PSMO) on (011) surfaces of SrTiO3 (STO) or [(LaAlO3){0.3}(SrAl0.5Ta0.5O3){0.7}] (LSAT), were measured as a function of temperature. The result shows, as expected based on previous knowledge of bulk materials, that the films' resistivity is closely related to their structures. Observed superlattice reflections indicate that NSMO thin films have an antiferro-orbital-ordered phase as their low-temperature phase while PSMO film on LSAT has a ferro-orbital-ordered phase, and that on STO has no orbital-ordered phase. A metallic ground state was observed only in films having a narrow region of A-site ion radius, while larger ions favor ferro-orbital-ordered structure and smaller ions stabilize antiferro-orbital-ordered structure. The key to the orbital-ordering transition in (011) film is found to be the in-plane displacement along [0-1 1] direction.Comment: 19pages, 11 figure

    Spitzer view on the evolution of star-forming galaxies from z=0 to z~3

    Full text link
    We use a 24 micron selected sample containing more than 8,000 sources to study the evolution of star-forming galaxies in the redshift range from z=0 to z~3. We obtain photometric redshifts for most of the sources in our survey using a method based on empirically-built templates spanning from ultraviolet to mid-infrared wavelengths. The accuracy of these redshifts is better than 10% for 80% of the sample. The derived redshift distribution of the sources detected by our survey peaks at around z=0.6-1.0 (the location of the peak being affected by cosmic variance), and decays monotonically from z~1 to z~3. We have fitted infrared luminosity functions in several redshift bins in the range 0<z<~3. Our results constrain the density and/or luminosity evolution of infrared-bright star-forming galaxies. The typical infrared luminosity (L*) decreases by an order of magnitude from z~2 to the present. The cosmic star formation rate (SFR) density goes as (1+z)^{4.0\pm0.2} from z=0 to z=0.8. From z=0.8 to z~1.2, the SFR density continues rising with a smaller slope. At 1.2<z<3, the cosmic SFR density remains roughly constant. The SFR density is dominated at low redshift (z<0.5) by galaxies which are not very luminous in the infrared (L_TIR<1.e11 L_sun, where L_TIR is the total infrared luminosity, integrated from 8 to 1000 micron). The contribution from luminous and ultraluminous infrared galaxies (L_TIR>1.e11 L_sun) to the total SFR density increases steadily from z~0 up to z~2.5, forming at least half of the newly-born stars by z~1.5. Ultraluminous infrared galaxies (L_TIR>1.e12 L_sun) play a rapidly increasing role for z>~1.3.Comment: 28 pages, 17 figures, accepted for publication in Ap

    Pressure-induced superconductivity in Eu0.5_{0.5}Ca0.5_{0.5}Fe2_2As2_2 : FeAs-based superconductivity hidden by antiferromagnetism of Eu sublattice

    Full text link
    To clarify superconductivity in EuFe2As2 hidden by antiferromagnetism of Eu2+, we investigated a Ca-substituted sample, Eu0.5Ca0.5Fe2As2, under high pressure. For ambient pressure, the sample exhibits a spin-density-wave (SDW) transition at TSDW = 191 K and antiferromagnetic order at TN = 4 K, but no evidence of superconductivity down to 2 K. The Ca-substitution certainly weakens the antiferromagnetism. With increasing pressure, TSDW shifts to lower temperature and becomes more unclear. Above 1.27 GPa, pressure-induced superconductivity with zero resistivity is observed at around Tc = 20 K. At 2.14 GPa, Tc reaches a maximum value of 24 K and the superconducting transition becomes the sharpest. These features of emergence of the superconductivity are qualitatively similar to those observed in AFe2As2 (A = Ba, Ca).Comment: 4 pages, 4 figure
    corecore