9,478 research outputs found

    Seesaw Right Handed Neutrino as the Sterile Neutrino for LSND

    Full text link
    We show that a double seesaw framework for neutrino masses with μτ\mu-\tau exchange symmetry can lead to one of the righthanded seesaw partners of the light neutrinos being massless. This can play the role of a light sterile neutrino, giving a 3+13+1 model that explains the LSND results. We get a very economical scheme, which makes it possible to predict the full 4×44\times 4 neutrino mass matrix if CP is conserved. Once CP violation is included, effect of the LSND mass range sterile neutrino is to eliminate the lower bound on neutrinoless double beta decay rate which exists for the three neutrino case with inverted mass hierarchy. The same strategy can also be used to generate a natural 3+23+2 model for LSND, which is also equally predictive for the CP conserving case in the limit of exact μτ\mu-\tau symmetry.Comment: 13 pages and one figure; model extended to 3+2 cas

    Production of qqQQ final states in ee collisions in the left-right symmetric model

    Full text link
    We consider the reaction ee ->qqQQ as a test of lepton number non-conservation in the framework of the left-right-symmetric electroweak model. The main contributions to this process are due to Majorana neutrino exchange in t-channel and doubly charged Higgs (Delta{--}) exchange in s-channel with a pair of right-handed weak bosons (WR) as intermediate state. We show that in a linear ee collider with the collision energy of 1 TeV (1.5 TeV) the cross section of this process is 0.01 fb (1 fb), and it will, for the anticipated luminosity of 10**{35} cm**{-2}, be detectable below the WR threshold. We study the sensitivity of the reaction on the masses of the heavy neutrino, WR and Delta{--}.Comment: 24 pages, 9 eps figures, uses axodraw.st

    Phenomenological Consequences of sub-leading Terms in See-Saw Formulas

    Full text link
    Several aspects of next-to-leading (NLO) order corrections to see-saw formulas are discussed and phenomenologically relevant situations are identified. We generalize the formalism to calculate the NLO terms developed for the type I see-saw to variants like the inverse, double or linear see-saw, i.e., to cases in which more than two mass scales are present. In the standard type I case with very heavy fermion singlets the sub-leading terms are negligible. However, effects in the percent regime are possible when sub-matrices of the complete neutral fermion mass matrix obey a moderate hierarchy, e.g. weak scale and TeV scale. Examples are cancellations of large terms leading to small neutrino masses, or inverse see-saw scenarios. We furthermore identify situations in which no NLO corrections to certain observables arise, namely for mu-tau symmetry and cases with a vanishing neutrino mass. Finally, we emphasize that the unavoidable unitarity violation in see-saw scenarios with extra fermions can be calculated with the formalism in a straightforward manner.Comment: 22 pages, matches published versio

    Reconciling Supersymmetry and Left-Right Symmetry

    Get PDF
    We construct the minimal supersymmetric left-right theory and show that at the renormalizable level it requires the existence of an intermediate BLB-L breaking scale. The subsequent symmetry breaking down to MSSM automatically preserves R-symmetry. Furthermore, unlike in the nonsupersymmetric version of the theory, the see-saw mechanism takes its canonical form. The theory predicts the existence of a triplet of Higgs scalars much lighter than the BLB-L breaking scale.Comment: 4 pages, revtex, no figure

    Gauged Discrete Symmetries and Proton Stability

    Full text link
    We discuss the results of a search for anomaly free Abelian Z_N discrete symmetries that lead to automatic R-parity conservation and prevents dangerous higher-dimensional proton decay operators in simple extensions of the minimal supersymmetric extension of the standard model (MSSM) based on the left-right symmetric group, the Pati-Salam group and SO(10). We require that the superpotential for the models have enough structures to be able to give correct symmetry breaking to MSSM and potentially realistic fermion masses. We find viable models in each of the extensions and for all the cases, anomaly freedom of the discrete symmetry restricts the number of generations.Comment: 8 pages, 2 figures; v2 : typos fixed, references adde

    Supersymmetry Breaking by Type II Seesaw Assisted Anomaly Mediation

    Full text link
    Anomaly mediated supersymmetry breaking (AMSB), when implemented in MSSM is known to suffer from the problem of negative slepton mass squared leading to breakdown of electric charge conservation. We show however that when MSSM is extended to explain small neutrino masses by including a pair of superheavy Higgs triplet superfields (the type II seesaw mechanism), the slepton masses can be deflected from the pure AMSB trajectory and become positive. In a simple model we present in this paper, the seesaw scale is about 10131014GeV10^{13}-10^{14}{\rm GeV}. Gauge coupling unification can be maintained by embedding the triplet to SU(5) {\bf 15}-multiplet. In this scenario, bino is the LSP and its mass is nearly degenerate with NLSP slepton when the triplet mass is right around the seesaw scale.Comment: 18 pages, 4 figures, added references, added footnote

    Seesaw Extended MSSM and Anomaly Mediation without Tachyonic Sleptons

    Full text link
    Superconformal anomalies provide an elegant and economical way to understand the soft breaking parameters in SUSY models; however, implementing them leads to the several undesirable features including: tachyonic sleptons and electroweak symmetry breaking problems in both the MSSM and the NMSSM. Since these two theories also have the additonal problem of massless neutrinos, we have reconsidered the AMSB problems in a class of models that extends the NMSSM to explain small neutrino masses via the seesaw mechanism. In a recent paper, we showed that for a class of minimal left-right extensions, a built-in mechanism exists which naturally solves the tachyonic slepton problem and provides new alternatives to the MSSM that also have automatic R-parity conservation. In this paper, we discuss how electroweak symmetry breaking arises in this model through an NMSSM-like low energy theory with a singlet VEV, induced by the structure of the left-right extension and of the right magnitude. We then study the phenomenological issues and find: the LSP is an Higgsino-wino mix, new phenomenology for chargino decays to the LSP, degenerate same generation sleptons and a potential for a mild squark-slepton degeneracy. We also discuss possible collider signatures and the feasibility of dark matter in this model.Comment: 40 pages, 10 figures, 5 tables; v3: Added addendum and three new references; v4: Added reference that was inadvertently omitte

    Searching for Strongly Interacting Massive Particles (SIMPs)

    Get PDF
    We consider laboratory experiments that can detect stable, neutral strongly interacting massive particles (SIMPs). We explore the SIMP annihilation cross section from its minimum value (restricted by cosmological bounds) to the barn range, and vary the mass values from a GeV to a TeV. We calculate, as a function of the SIMP-nucleon cross section, the minimum nucleon number A for which there should be binding in a nucleus. We consider accelerator mass spectrometry with a gold (A=200) target, and compute the likely abundance of anomalous gold nuclei if stable neutral SIMPs exist. We also consider the prospects and problems of detecting such particles at the Tevatron. We estimate optimistically that such detection might be possible for SIMPs with SIMP-nucleon cross sections larger than 0.1 millibarn and masses between 25 and 50 GeV.Comment: RevTeX, 10 pages, 3 figures; Minor updates to match published versio

    Neutrino Mass and Grand Unification

    Full text link
    Seesaw mechanism appears to be the simplest and most appealing way to understand small neutrino masses observed in recent experiments. It introduces three right handed neutrinos with heavy masses to the standard model, with at least one mass required by data to be close to the scale of conventional grand unified theories. This may be a hint that the new physics scale implied by neutrino masses and grand unification of forces are one and the same. Taking this point of view seriously, I explore different ways to resolve the puzzle of large neutrino mixings in grand unified theories such as SO(10) and models based on its subgroup SU(2)L×SU(2)R×SU(4)cSU(2)_L\times SU(2)_R\times SU(4)_c.Comment: 17 pages, 5 figures; Invited talk at the Nobel Symposium 129 on Neutrinos at Haga Slott, Sweden, August, 200

    Neutrino, Lepton, and Quark Masses in Supersymmetry

    Get PDF
    The recently proposed model of neutrino mass with no new physics beyond the TeV energy scale is shown to admit a natural and realistic supersymmetric realization, when combined with another recently proposed model of quark masses in the context of a softly broken U(1) symmetry. Four Higgs doublets are required, but two must have masses at the TeV scale. New characteristic experimental predictions of this synthesis are discussed.Comment: 7 pages, no figur
    corecore