2,661 research outputs found

    Squeezed correlations of strange particle-antiparticles

    Full text link
    Squeezed correlations of hadron-antihadron pairs are predicted to appear if their masses are modified in the hot and dense medium formed in high energy heavy ion collisions. If discovered experimentally, they would be an unequivocal evidence of in-medium mass shift found by means of hadronic probes. We discuss a method proposed to search for this novel type of correlation, illustrating it by means of D_s-mesons with in-medium shifted masses. These particles are expected to be more easily detected and identified in future upgrades at RHIC.Comment: 6 pages, 3 figures with parts a) and b), SQM 2009 contribution; added acknowledgmen

    The Shears Mechanism in 142Gd in the Skyrme-Hartree-Fock Method with the Tilted-Axis Cranking

    Get PDF
    We report on the first Skyrme-Hartree-Fock calculations with the tilted-axis cranking in the context of magnetic rotation. The mean field symmetries, differences between phenomenological and self-consistent methods and the generation of shears-like structures in the mean field are discussed. Significant role of the time-odd spin-spin effective interaction is pointed out. We reproduce the shears mechanism, but quantitative agreement with experiment is rather poor. It may have to do with too large core polarization, lack of pairing correlations or properties of the Skyrme force.Comment: Presented at the XXVII Mazurian Lakes School of Physics, September 2-9 2001, Krzyze, Poland, Submitted to Acta Physica Polonic

    Representations of Menger (2,n)(2,n)-semigroups by multiplace functions

    Full text link
    Investigation of partial multiplace functions by algebraic methods plays an important role in modern mathematics were we consider various operations on sets of functions, which are naturally defined. The basic operation for nn-place functions is an (n+1)(n+1)-ary superposition [][ ], but there are some other naturally defined operations, which are also worth of consideration. In this paper we consider binary Mann's compositions \op{1},...,\op{n} for partial nn-place functions, which have many important applications for the study of binary and nn-ary operations. We present methods of representations of such algebras by nn-place functions and find an abstract characterization of the set of nn-place functions closed with respect to the set-theoretic inclusion

    Representations of (2,n)(2,n)-semigroups by multiplace functions

    Full text link
    We describe the representations of (2,n)(2,n)-semigroups, i.e. groupoids with nn binary associative operations, by partial nn-place functions and prove that any such representation is a union of some family of representations induced by Schein's determining pairs.Comment: 17 page

    Squeezed K^+ K^- correlations in high energy heavy ion collisions

    Full text link
    The hot and dense medium formed in high energy heavy ion collisions may modify some hadronic properties. In particular, if hadron masses are shifted in-medium, it was demonstrated that this could lead to back-to-back squeezed correlations (BBC) of particle-antiparticle pairs. Although well-established theoretically, the squeezed correlations have not yet been discovered experimentally. A method has been suggested for the empirical search of this effect, which was previously illustrated for phi-phi pairs. We apply here the formalism and the suggested method to the case of K^+ K^- pairs, since they may be easier to identify experimentally. The time distribution of the emission process plays a crucial role in the survival of the BBC's. We analyze the cases where the emission is supposed to occur suddenly or via a Lorentzian distribution, and compare with the case of a Levy distribution in time. Effects of squeezing on the correlation function of identical particles are also analyzed.Comment: 9 pages and 6 figures (figures 2 to 6 contain 4 plots each). Paragraph added to text, figures 2 to 6 revised for improving visualizatio

    Asymptotic directional structure of radiation for fields of algebraic type D

    Full text link
    The directional behavior of dominant components of algebraically special spin-s fields near a spacelike, timelike or null conformal infinity is studied. By extending our previous general investigations we concentrate on fields which admit a pair of equivalent algebraically special null directions, such as the Petrov type D gravitational fields or algebraically general electromagnetic fields. We introduce and discuss a canonical choice of the reference tetrad near infinity in all possible situations, and we present the corresponding asymptotic directional structures using the most natural parametrizations.Comment: 20 pages, 6 figure

    Redox signals at the ER-mitochondria interface control melanoma progression.

    No full text
    Reactive oxygen species (ROS) are emerging as important regulators of cancer growth and metastatic spread. However, how cells integrate redox signals to affect cancer progression is not fully understood. Mitochondria are cellular redox hubs, which are highly regulated by interactions with neighboring organelles. Here, we investigated how ROS at the endoplasmic reticulum (ER)-mitochondria interface are generated and translated to affect melanoma outcome. We show that TMX1 and TMX3 oxidoreductases, which promote ER-mitochondria communication, are upregulated in melanoma cells and patient samples. TMX knockdown altered mitochondrial organization, enhanced bioenergetics, and elevated mitochondrial- and NOX4-derived ROS. The TMX-knockdown-induced oxidative stress suppressed melanoma proliferation, migration, and xenograft tumor growth by inhibiting NFAT1. Furthermore, we identified NFAT1-positive and NFAT1-negative melanoma subgroups, wherein NFAT1 expression correlates with melanoma stage and metastatic potential. Integrative bioinformatics revealed that genes coding for mitochondrial- and redox-related proteins are under NFAT1 control and indicated that TMX1, TMX3, and NFAT1 are associated with poor disease outcome. Our study unravels a novel redox-controlled ER-mitochondria-NFAT1 signaling loop that regulates melanoma pathobiology and provides biomarkers indicative of aggressive disease

    Shell Corrections for Finite-Depth Deformed Potentials: Green's Function Oscillator Expansion Method

    Get PDF
    Shell corrections of the finite deformed Woods-Saxon potential are calculated using the Green's function method and the generalized Strutinsky smoothing procedure. They are compared with the results of the standard prescription which are affected by the spurious contribution from the unphysical particle gas. In the new method, the shell correction approaches the exact limit provided that the dimension of the single-particle (harmonic oscillator) basis is sufficiently large. For spherical potentials, the present method is faster than the exact one in which the contribution from the particle continuum states is explicitly calculated. For deformed potentials, the Green's function method offers a practical and reliable way of calculating shell corrections for weakly bound nuclei.Comment: submitted to Phys. Rev. C, 12 pages, 7 figure
    • 

    corecore