11,590 research outputs found

    Evolving a DSL implementation

    Get PDF
    Domain Specific Languages (DSLs) are small languages designed for use in a specific domain. DSLs typically evolve quite radically throughout their lifetime, but current DSL implementation approaches are often clumsy in the face of such evolution. In this paper I present a case study of an DSL evolving in its syntax, semantics, and robustness, implemented in the Converge language. This shows how real-world DSL implementations can evolve along with changing requirements

    ShapeFit and ShapeKick for Robust, Scalable Structure from Motion

    Full text link
    We introduce a new method for location recovery from pair-wise directions that leverages an efficient convex program that comes with exact recovery guarantees, even in the presence of adversarial outliers. When pairwise directions represent scaled relative positions between pairs of views (estimated for instance with epipolar geometry) our method can be used for location recovery, that is the determination of relative pose up to a single unknown scale. For this task, our method yields performance comparable to the state-of-the-art with an order of magnitude speed-up. Our proposed numerical framework is flexible in that it accommodates other approaches to location recovery and can be used to speed up other methods. These properties are demonstrated by extensively testing against state-of-the-art methods for location recovery on 13 large, irregular collections of images of real scenes in addition to simulated data with ground truth

    Physical properties of high-mass clumps in different stages of evolution

    Full text link
    (Abridged) Aims. To investigate the first stages of the process of high-mass star formation, we selected a sample of massive clumps previously observed with the SEST at 1.2 mm and with the ATNF ATCA at 1.3 cm. We want to characterize the physical conditions in such sources, and test whether their properties depend on the evolutionary stage of the clump. Methods. With ATCA we observed the selected sources in the NH3(1,1) and (2,2) transitions and in the 22 GHz H2O maser line. Ammonia lines are a good temperature probe that allow us to accurately determine the mass and the column-, volume-, and surface densities of the clumps. We also collected all data available to construct the spectral energy distribution of the individual clumps and to determine if star formation is already occurring, through observations of its most common signposts, thus putting constraints on the evolutionary stage of the source. We fitted the spectral energy distribution between 1.2 mm and 70 microns with a modified black body to derive the dust temperature and independently determine the mass. Results. The clumps are cold (T~10-30 K), massive (M~10^2-10^3 Mo), and dense (n(H2)>~10^5 cm^-3) and they have high column densities (N(H2)~10^23 cm^-2). All clumps appear to be potentially able to form high-mass stars. The most massive clumps appear to be gravitationally unstable, if the only sources of support against collapse are turbulence and thermal pressure, which possibly indicates that the magnetic field is important in stabilizing them. Conclusions. After investigating how the average properties depend on the evolutionary phase of the source, we find that the temperature and central density progressively increase with time. Sources likely hosting a ZAMS star show a steeper radial dependence of the volume density and tend to be more compact than starless clumps.Comment: Published in A&A, Vol. 556, A1

    Trigonometric Parallaxes of Massive Star-Forming Regions. IX. The Outer Arm in the First Quadrant

    Full text link
    We report a trigonometric parallax measurement with the Very Long Baseline Array for the water maser in the distant high-mass star-forming region G75.30+1.32. This source has a heliocentric distance of 9.25+-0.45 kpc, which places it in the Outer arm in the first Galactic quadrant. It lies 200 pc above the Galactic plane and is associated with a substantial HI enhancement at the border of a large molecular cloud. At a Galactocentric radius of 10.7 kpc, G75.30+1.32 is in a region of the Galaxy where the disk is significantly warped toward the North Galactic Pole. While the star-forming region has an instantaneous Galactic orbit that is nearly circular, it displays a significant motion of 18 km/s toward the Galactic plane. The present results, when combined with two previous maser studies in the Outer arm, yield a pitch angle of about 12 degrees for a large section of the arm extending from the first quadrant to the third.Comment: 19 pages, 5 figures, 4 tables, accepted by The Astrophysical Journa
    corecore