3,722 research outputs found

    Transport through a vibrating quantum dot: Polaronic effects

    Full text link
    We present a Green's function based treatment of the effects of electron-phonon coupling on transport through a molecular quantum dot in the quantum limit. Thereby we combine an incomplete variational Lang-Firsov approach with a perturbative calculation of the electron-phonon self energy in the framework of generalised Matsubara Green functions and a Landauer-type transport description. Calculating the ground-state energy, the dot single-particle spectral function and the linear conductance at finite carrier density, we study the low-temperature transport properties of the vibrating quantum dot sandwiched between metallic leads in the whole electron-phonon coupling strength regime. We discuss corrections to the concept of an anti-adiabatic dot polaron and show how a deformable quantum dot can act as a molecular switch.Comment: 10 pages, 8 figures, Proceedings of "Progress in Nonequilibrium Green's Function IV" Conference, Glasgow 200

    Phonon-affected steady-state transport through molecular quantum dots

    Full text link
    We consider transport through a vibrating molecular quantum dot contacted to macroscopic leads acting as charge reservoirs. In the equilibrium and nonequilibrium regime, we study the formation of a polaron-like transient state at the quantum dot for all ratios of the dot-lead coupling to the energy of the local phonon mode. We show that the polaronic renormalization of the dot-lead coupling is a possible mechanism for negative differential conductance. Moreover, the effective dot level follows one of the lead chemical potentials to enhance resonant transport, causing novel features in the inelastic tunneling signal. In the linear response regime, we investigate the impact of the electron-phonon interaction on the thermoelectrical properties of the quantum dot device.Comment: 11 pages, 7 figures, FQMT11 Proceeding

    ASSESSMENT OF THE TRAINING AND CONTINUING EDUCATION NEEDS OF A REGIONAL PUBLIC HEALTH WORKFORCE

    Get PDF
    A large Midwestern university recently received accreditation for its Master of Public Health (MPH) degree program from the Council on Education for Public Health (CEPH). Requirements of the accreditation include the periodic assessment of the regional public health workforce’s professional development needs and the delivery of training and continuing education to meet those needs. To that end, this study’s primary purpose was to describe the professional development needs of the regional public health workforce and to develop recommendations for the provision of professional development activities to meet those needs. Fifty-eight respondents from 27 regional public health departments and 7 regional health coalitions completed the survey, identifying priority public health topical training needs as well as priority community health education competency training needs. Additionally, respondents indicated a preference for the delivery of trainings, with offsite, face-to-face training sessions offering continuing education units (CEUs) in a series of half-day or full-day workshops being favored

    Hooke's law correlation in two-electron systems

    Full text link
    We study the properties of the Hooke's law correlation energy (\Ec), defined as the correlation energy when two electrons interact {\em via} a harmonic potential in a DD-dimensional space. More precisely, we investigate the 1S^1S ground state properties of two model systems: the Moshinsky atom (in which the electrons move in a quadratic potential) and the spherium model (in which they move on the surface of a sphere). A comparison with their Coulombic counterparts is made, which highlights the main differences of the \Ec in both the weakly and strongly correlated limits. Moreover, we show that the Schr\"odinger equation of the spherium model is exactly solvable for two values of the dimension (D=1and3D = 1 \text{and} 3), and that the exact wave function is based on Mathieu functions.Comment: 7 pages, 5 figure

    Uniform electron gases

    Full text link
    We show that the traditional concept of the uniform electron gas (UEG) --- a homogeneous system of finite density, consisting of an infinite number of electrons in an infinite volume --- is inadequate to model the UEGs that arise in finite systems. We argue that, in general, a UEG is characterized by at least two parameters, \textit{viz.} the usual one-electron density parameter ρ\rho and a new two-electron parameter η\eta. We outline a systematic strategy to determine a new density functional E(ρ,η)E(\rho,\eta) across the spectrum of possible ρ\rho and η\eta values.Comment: 8 pages, 2 figures, 5 table

    Excited states of spherium

    Full text link
    We report analytic solutions of a recently discovered quasi-exactly solvable model consisting of two electrons, interacting {\em via} a Coulomb potential, but restricted to remain on the surface of a D\mathcal{D}-dimensional sphere. Polynomial solutions are found for the ground state, and for some higher (L3L\le3) states. Kato cusp conditions and interdimensional degeneracies are discussed.Comment: 6 pages, 2 figures, to appear in Mol. Phy

    Phonon affected transport through molecular quantum dots

    Full text link
    To describe the interaction of molecular vibrations with electrons at a quantum dot contacted to metallic leads, we extend an analytical approach that we previously developed for the many-polaron problem. Our scheme is based on an incomplete variational Lang-Firsov transformation, combined with a perturbative calculation of the electron-phonon self-energy in the framework of generalised Matsubara functions. This allows us to describe the system at weak to strong coupling and intermediate to large phonon frequencies. We present results for the quantum dot spectral function and for the kinetic coefficient that characterises the electron transport through the dot. With these results we critically examine the strengths and limitations of our approach, and discuss the properties of the molecular quantum dot in the context of polaron physics. We place particular emphasis on the importance of corrections to the concept of an antiadiabatic dot polaron suggested by the complete Lang-Firsov transformation.Comment: 30 pages, 15 figures, revised version including new figure

    Invariance of the correlation energy at high density and large dimension in two-electron systems

    Full text link
    We prove that, in the large-dimension limit, the high-density correlation energy \Ec of two opposite-spin electrons confined in a DD-dimensional space and interacting {\em via} a Coulomb potential is given by \Ec \sim -1/(8D^2) for any radial confining potential V(r)V(r). This result explains the observed similarity of \Ec in a variety of two-electron systems in three-dimensional space.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let

    Compression of sub-relativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction

    Full text link
    We demonstrate compression of 95 keV, space-charge-dominated electron bunches to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are of sufficient quality to capture a diffraction pattern with a single shot, which we demonstrate by a diffraction experiment on a polycrystalline gold foil. Compression is realized by means of velocity bunching as a result of a velocity chirp, induced by the oscillatory longitudinal electric field of a 3 GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs

    Identity in the Writings of Lucian of Samosata

    Get PDF
    The second-century CE Greek sophist, rhetorician, and satirist Lucian of Samosata (c. 120-185 CE) presents a complex figure in his writings. A native of the province of Syria who wrote in Greek under the Roman Empire, Lucian’s identity and perspective on the world around him seems complex and often self-contradictory in his works. In light of Lucian’s complexity, readers and later scholars have sometimes tried to pigeonhole his identity into simple terms of “Greek,” “Syrian,” or “Roman.” This thesis offers an alternative view, applying the postcolonial lens of “discrepant identities” to Lucian’s literary personae in his writings. Lucian’s self-portrayal shifted between his works due to a variety of factors stemming from Roman imperial rule. Through a series of case studies of Lucian’s works (De Dea Syria, Heracles, De Mercede Conductis, Apologia, and Patriae Encomium) this thesis shows the malleability of Lucian’s self-presentation within his literary corpus due to his evolving circumstances, the broader context of the Roman Empire, and the pressures of unfavorable stereotypes. Finally, as a figure with a sizable literary record, Lucian offers an excellent model of how the identities of other provincials may have shifted as a response to the necessities of life in the heterogeneous Roman Empire.History, Department ofHonors Colleg
    corecore