1,974 research outputs found
Classical diffusion in double-delta-kicked particles
We investigate the classical chaotic diffusion of atoms subjected to {\em
pairs} of closely spaced pulses (`kicks) from standing waves of light (the
-KP). Recent experimental studies with cold atoms implied an
underlying classical diffusion of type very different from the well-known
paradigm of Hamiltonian chaos, the Standard Map.
The kicks in each pair are separated by a small time interval , which together with the kick strength , characterizes the transport.
Phase space for the -KP is partitioned into momentum `cells' partially
separated by momentum-trapping regions where diffusion is slow. We present here
an analytical derivation of the classical diffusion for a -KP
including all important correlations which were used to analyze the
experimental data.
We find a new asymptotic () regime of `hindered' diffusion:
while for the Standard Map the diffusion rate, for , oscillates about the uncorrelated, rate , we find
analytically, that the -KP can equal, but never diffuses faster than,
a random walk rate.
We argue this is due to the destruction of the important classical
`accelerator modes' of the Standard Map.
We analyze the experimental regime , where
quantum localisation lengths are affected by fractal
cell boundaries. We find an approximate asymptotic diffusion rate , in correspondence to a regime in the Standard Map
associated with 'golden-ratio' cantori.Comment: 14 pages, 10 figures, error in equation in appendix correcte
Anderson localization or nonlinear waves? A matter of probability
In linear disordered systems Anderson localization makes any wave packet stay
localized for all times. Its fate in nonlinear disordered systems is under
intense theoretical debate and experimental study. We resolve this dispute
showing that at any small but finite nonlinearity (energy) value there is a
finite probability for Anderson localization to break up and propagating
nonlinear waves to take over. It increases with nonlinearity (energy) and
reaches unity at a certain threshold, determined by the initial wave packet
size. Moreover, the spreading probability stays finite also in the limit of
infinite packet size at fixed total energy. These results are generalized to
higher dimensions as well.Comment: 4 pages, 3 figure
Was Planet 9 captured in the Sunâs natal star-forming region?
The presence of an unseen âPlanet 9â on the outskirts of the Solar system has been invoked
to explain the unexpected clustering of the orbits of several EdgeworthâKuiper Belt Objects.
We use N-body simulations to investigate the probability that Planet 9 was a free-floating
planet (FFLOP) that was captured by the Sun in its birth star formation environment. We find
that only 1â6 per cent of FFLOPs are ensnared by stars, even with the most optimal initial
conditions for capture in star-forming regions (one FFLOP per star, and highly correlated
stellar velocities to facilitate capture). Depending on the initial conditions of the star-forming
regions, only 5â10 of 10 000 planets are captured on to orbits that lie within the constraints for
Planet 9. When we apply an additional environmental constraint for Solar system formation
â namely the injection of short-lived radioisotopes into the Sunâs protoplanetary disc from
supernovae â we find the probability for the capture of Planet 9 to be almost zero
Position and velocity space diffusion of test particles in stochastic electromagnetic fields
The two--dimensional diffusive dynamics of test particles in a random
electromagnetic field is studied. The synthetic electromagnetic fluctuations
are generated through randomly placed magnetised ``clouds'' oscillating with a
frequency . We investigate the mean square displacements of particles
in both position and velocity spaces. As increases the particles
undergo standard (Brownian--like) motion, anomalous diffusion and ballistic
motion in position space. Although in general the diffusion properties in
velocity space are not trivially related to those in position space, we find
that energization is present only when particles display anomalous diffusion in
position space. The anomalous character of the diffusion is only in the
non--standard values of the scaling exponents while the process is Gaussian.Comment: 10 pages, 4 figure
Lyapunov exponents as a dynamical indicator of a phase transition
We study analytically the behavior of the largest Lyapunov exponent
for a one-dimensional chain of coupled nonlinear oscillators, by
combining the transfer integral method and a Riemannian geometry approach. We
apply the results to a simple model, proposed for the DNA denaturation, which
emphasizes a first order-like or second order phase transition depending on the
ratio of two length scales: this is an excellent model to characterize
as a dynamical indicator close to a phase transition.Comment: 8 Pages, 3 Figure
CO2 ocean bistability on terrestrial exoplanets
Cycling of carbon dioxide between the atmosphere and interior of rocky planets can stabilize global climate and enable planetary surface temperatures above freezing over geologic time. However, variations in global carbon budget and unstable feedback cycles between planetary sub-systems may destabilize the climate of rocky exoplanets toward regimes unknown in the Solar System. Here, we perform clear-sky atmospheric radiative transfer and surface weathering simulations to probe the stability of climate equilibria for rocky, ocean-bearing exoplanets at instellations relevant for planetary systems in the outer regions of the circumstellar habitable zone. Our simulations suggest that planets orbiting G- and F-type stars (but not M-type stars) may display bistability between an Earth-like climate state with efficient carbon sequestration and an alternative stable climate equilibrium where CO2 condenses at the surface and forms a blanket of either clathrate hydrate or liquid CO2. At increasing instellation and with ineffective weathering, the latter state oscillates between cool, surface CO2-condensing and hot, non-condensing climates. CO2 bistable climates may emerge early in planetary history and remain stable for billions of years. The carbon dioxide-condensing climates follow an opposite trend in pCO2 versus instellation compared to the weathering-stabilized planet population, suggesting the possibility of observational discrimination between these distinct climate categories
Controlling high-frequency collective electron dynamics via single-particle complexity
We demonstrate, through experiment and theory, enhanced high-frequency
current oscillations due to magnetically-induced conduction resonances in
superlattices. Strong increase in the ac power originates from complex
single-electron dynamics, characterized by abrupt resonant transitions between
unbound and localized trajectories, which trigger and shape propagating charge
domains. Our data demonstrate that external fields can tune the collective
behavior of quantum particles by imprinting configurable patterns in the
single-particle classical phase space.Comment: 5 pages, 4 figure
Bose-Einstein Condensate Driven by a Kicked Rotor in a Finite Box
We study the effect of different heating rates of a dilute Bose gas confined
in a quasi-1D finite, leaky box. An optical kicked-rotor is used to transfer
energy to the atoms while two repulsive optical beams are used to confine the
atoms. The average energy of the atoms is localized after a large number of
kicks and the system reaches a nonequilibrium steady state. A numerical
simulation of the experimental data suggests that the localization is due to
energetic atoms leaking over the barrier. Our data also indicates a correlation
between collisions and the destruction of the Bose-Einstein condensate
fraction.Comment: 7 pages, 8 figure
CO2 Ocean Bistability on Terrestrial Exoplanets
Cycling of carbon dioxide between the atmosphere and interior of rocky planets can stabilize global climate and enable planetary surface temperatures above freezing over geologic time. However, variations in global carbon budget and unstable feedback cycles between planetary subâsystems may destabilize the climate of rocky exoplanets toward regimes unknown in the Solar System. Here, we perform clearâsky atmospheric radiative transfer and surface weathering simulations to probe the stability of climate equilibria for rocky, oceanâbearing exoplanets at instellations relevant for planetary systems in the outer regions of the circumstellar habitable zone. Our simulations suggest that planets orbiting Gâ and Fâtype stars (but not Mâtype stars) may display bistability between an Earthâlike climate state with efficient carbon sequestration and an alternative stable climate equilibrium where CO(2) condenses at the surface and forms a blanket of either clathrate hydrate or liquid CO(2). At increasing instellation and with ineffective weathering, the latter state oscillates between cool, surface CO(2)âcondensing and hot, nonâcondensing climates. CO(2) bistable climates may emerge early in planetary history and remain stable for billions of years. The carbon dioxideâcondensing climates follow an opposite trend in pCO(2) versus instellation compared to the weatheringâstabilized planet population, suggesting the possibility of observational discrimination between these distinct climate categories
- âŠ