26,562 research outputs found
Multi Weyl Points and the Sign Change of Their Topological Charges in Woodpile Photonic Crystals
We show that Weyl points with topological charges 1 and 2 can be found in
very simple chiral woodpile photonic crystals, which can be fabricated using
current techniques down to the nano-scale. The sign of the topological charges
can be tuned by changing the material parameters of the crystal, keeping the
structure and the symmetry unchanged. The underlying physics can be understood
using a tight binding model, which shows that the sign of the charge depends on
the hopping range. Gapless surface states and their back-scattering immune
properties are also demonstrated in these systems
Chaos-modified detrended moving average methodology for monitoring the depth of anaesthesia
This paper proposes a new method to monitor the depth of anaesthesia (DoA) based on the EEG signal. This approach firstly uses discrete wavelet transform (DWT) to to remove the spikes and the low frequency noise from raw EEG signals. After de-noising the EEG signals, the modified Hurst parameter is proposed with two new indices (CDoA and CsDoA), to estimate the anaesthesia states of the patients. To reduce the fluctuation of the new DoA index, a combination of Modified Chaos and Modifying Detrended Moving Average is used (MC-DMA). Analyses of variance (ANOVA) for C-MDMA and BIS distributions are presented The results indicate that the C-MDMA distributions at each anaesthesia state level are significantly different and the C-MDMA can distinguish five depths of anaesthesia. Compared with BIS trends, MC-DMA trend is close to BIS trend covering the whole scale from 100 to 0 with a full recording time
Partition function of the eight-vertex model with domain wall boundary condition
We derive the recursive relations of the partition function for the
eight-vertex model on an square lattice with domain wall boundary
condition. Solving the recursive relations, we obtain the explicit expression
of the domain wall partition function of the model. In the
trigonometric/rational limit, our results recover the corresponding ones for
the six-vertex model.Comment: Latex file, 20 pages; V2, references adde
Nuclear symmetry potential in the relativistic impulse approximation
Using the relativistic impulse approximation with the Love-Franey \textsl{NN}
scattering amplitude developed by Murdock and Horowitz, we investigate the
low-energy (100 MeV MeV) behavior of the nucleon
Dirac optical potential, the Schr\"{o}dinger-equivalent potential, and the
nuclear symmetry potential in isospin asymmetric nuclear matter. We find that
the nuclear symmetry potential at fixed baryon density decreases with
increasing nucleon energy. In particular, the nuclear symmetry potential at
saturation density changes from positive to negative values at nucleon kinetic
energy of about 200 MeV. Furthermore,the obtained energy and density dependence
of the nuclear symmetry potential is consistent with those of the isospin- and
momentum-dependent MDI interaction with , which has been found to describe
reasonably both the isospin diffusion data from heavy-ion collisions and the
empirical neutron-skin thickness of Pb.Comment: 8 pages, 5 figures, revised version to appear in PR
Quantum phases of a Feshbach-resonant atomic Bose gas in one dimension
We study an atomic Bose gas with an s-wave Feshbach resonance in a
one-dimensional optical lattice, with the densities of atoms and molecules
incommensurate with the lattice. At zero temperature, most of the parameter
region is occupied by a phase in which the superfluid fluctuations of atoms and
molecules are the predominant ones, due to the phase fluctuations of atoms and
molecules being locked by a Josephson coupling between them. When the density
difference between atoms and molecules is commensurate with the lattice, two
additional phases may exist: the two component Luttinger liquid where both the
atomic and molecular sectors are gapless, and the inter-channel charge density
wave where the relative density fluctuations between atoms and molecules are
frozen at low energy.Comment: 4+epsilon pages, 3 figures; references adde
B\to X_s\gamma, X_s l^+ l^- decays and constraints on the mass insertion parameters in the MSSM
In this paper, we study the upper bounds on the mass insertion parameters
in the minimal supersymmetric standard model (MSSM).
We found that the information from the measured branching ratio of decay can help us to improve the upper bounds on the mass insertions
parameters \left (\delta^{u,d}_{AB})_{3j,i3}. Some regions allowed by the
data of are excluded by the requirement of a SM-like
imposed by the data of .Comment: 16 pages, 5 eps figure files, typos remove
Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity.
The accumulation of senescent cells (SnCs) is a causal factor of various age-related diseases as well as some of the side effects of chemotherapy. Pharmacological elimination of SnCs (senolysis) has the potential to be developed into novel therapeutic strategies to treat these diseases and pathological conditions. Here we show that ubiquitin-specific peptidase 7 (USP7) is a novel target for senolysis because inhibition of USP7 with an inhibitor or genetic depletion of USP7 by RNA interference induces apoptosis selectively in SnCs. The senolytic activity of USP7 inhibitors is likely attributable in part to the promotion of the human homolog of mouse double minute 2 (MDM2) ubiquitination and degradation by the ubiquitin-proteasome system. This degradation increases the levels of p53, which in turn induces the pro-apoptotic proteins PUMA, NOXA, and FAS and inhibits the interaction of BCL-XL and BAK to selectively induce apoptosis in SnCs. Further, we show that treatment with a USP7 inhibitor can effectively eliminate SnCs and suppress the senescence-associated secretory phenotype (SASP) induced by doxorubicin in mice. These findings suggest that small molecule USP7 inhibitors are novel senolytics that can be exploited to reduce chemotherapy-induced toxicities and treat age-related diseases
Bayesian Speaker Adaptation Based on a New Hierarchical Probabilistic Model
In this paper, a new hierarchical Bayesian speaker adaptation method called HMAP is proposed that combines the advantages of three conventional algorithms, maximum a posteriori (MAP), maximum-likelihood linear regression (MLLR), and eigenvoice, resulting in excellent performance across a wide range of adaptation conditions. The new method efficiently utilizes intra-speaker and inter-speaker correlation information through modeling phone and speaker subspaces in a consistent hierarchical Bayesian way. The phone variations for a specific speaker are assumed to be located in a low-dimensional subspace. The phone coordinate, which is shared among different speakers, implicitly contains the intra-speaker correlation information. For a specific speaker, the phone variation, represented by speaker-dependent eigenphones, are concatenated into a supervector. The eigenphone supervector space is also a low dimensional speaker subspace, which contains inter-speaker correlation information. Using principal component analysis (PCA), a new hierarchical probabilistic model for the generation of the speech observations is obtained. Speaker adaptation based on the new hierarchical model is derived using the maximum a posteriori criterion in a top-down manner. Both batch adaptation and online adaptation schemes are proposed. With tuned parameters, the new method can handle varying amounts of adaptation data automatically and efficiently. Experimental results on a Mandarin Chinese continuous speech recognition task show good performance under all testing conditions
- …
