15,038 research outputs found

    Genome editing in non-model organisms opens new horizons for comparative physiology

    Get PDF
    For almost 100 years, biologists have made fundamental discoveries using a handful of model organisms that are not representative of the rich diversity found in nature. The advent of CRISPR genome editing now opens up a wide range of new organisms to mechanistic investigation. This increases not only the taxonomic breadth of current research but also the scope of biological problems that are now amenable to study, such as population control of invasive species, management of disease vectors such as mosquitoes, the creation of chimeric animal hosts to grow human organs and even the possibility of resurrecting extinct species such as passenger pigeons and mammoths. Beyond these practical applications, work on non-model organisms enriches our basic understanding of the natural world. This special issue addresses a broad spectrum of biological problems in non-model organisms and highlights the utility of genome editing across levels of complexity from development and physiology to behaviour and evolution

    Infrared Spectral Energy Distribution Model for Extremely Young Galaxies

    Full text link
    The small grain sizes produced by Type II supernova (SN II) models in young, metal-poor galaxies make the appearance of their infrared (IR) spectral energy distribution (SED) quite different from that of nearby, older galaxies. To study this effect, we have developed a model for the evolution of dust content and the IR SED of low-metallicity, extremely young galaxies based on Hirashita et al. (2002). We find that, even in the intense ultraviolet (UV) radiation field of very young galaxies, small silicate grains are subject to stochastic heating resulting in a broad temperature distribution and substantial MIR continuum emission. Larger carbonaceous grains are in thermal equilibrium at T \simeq 50 - 100K, and they also contribute to the MIR. We present the evolution of SEDs and IR extinction of very young, low-metallicity galaxies. The IR extinction curve is also shown. In the first few Myrs, the emission peaks at \lambda \sim 30-50um at later times dust self-absorption decreases the apparent grain temperatures, shifting the bulk of the emission into the submillimetre band. We successfully apply the model to the IR SED of a low metallicity (1/41 Z_\odot) dwarf galaxy SBS0335-052. We find the SED, optical properties and extinction of the star forming region to be consistent with a very young and compact starburst. We also predict the SED of another extremely low-metallicity galaxy, I Zw 18, for future observational tests. Some prospects for future observations are discussed.Comment: MNRAS in press, pages, 6 figures, using mn2e.cls. Abstract abridge

    Vital Disconnection in Howards End

    Get PDF

    Rule 408: Maintaining the Sheild for Negotiation in Federal and Bankruptcy Courts

    Get PDF
    corecore