729 research outputs found

    Comparison of bar strengths in optical and near-infrared for the OSUBSGS sample

    Full text link
    We use a gravitational bar torque method to compare bar strengths (the maximum tangential force normalized by radial force) in B and H-band images of 152 galaxies from the Ohio State University Bright Spiral Galaxy Survey. Our main motivation is to check how much the difference in the rest-frame wavelength could affect comparisons of bar strengths in low and high redshift observations. Between these two bands we find an average bar strength ratio Q_B/H= 1.25 which factor is nearly independent of the morphological type. We show that Q_B/H > 1 is mostly due to reduced bulge dilution of radial forces in the B-band. The bar torque method needs an estimate for the vertical scale height of the galaxy, based on the radial scale length of the disk and the galaxy's morphological type. Since these two might not always be possible to determine at high redshifts in a reliable manner, we also checked that similar results are obtained with vertical scale heights estimated from the radii corresponding to the K-band surface brightness of 20 mag/arcsec^2. Also, we made a simple test of the usability of the bar torque method at high redshifts by checking the effects of image degradation (nearest neighbour sampling without any adjustment of noise levels): we found that the estimated bar strengths varied by +/- 10% at most as long as the total extent of the bar was at least 10 pixels. Overall, we show that the gravitational bar torque method should provide a proficient tool for quantifying bar strengths also at high redshifts.Comment: 15 pages, 9 figures, 1 table, accepted to MNRA

    The Spatial Clustering of Low Luminosity AGN

    Full text link
    We present the first multi-parameter analysis of the narrow line AGN clustering properties. Estimates of the two-point correlation function (CF) based on SDSS DR2 data reveal that Seyferts are clearly less clustered than normal galaxies, while the clustering amplitude (r_0) of LINERs is consistent with that of the parent galaxy population. The similarities in the host properties (color and concentration index) of Seyferts and LINERs suggest that the difference in their r_0 is not driven by the morphology-density relation. We find that the luminosity of [O I] emission shows the strongest influence on AGN clustering, with low L([O I]) sources having the highest r_0. This trend is much stronger than the previously detected dependence on L([O III]), which we confirm. There is a strong correspondence between the clustering patterns of objects of given spectral type and their physical properties. LINERs, which exhibit high r_0, show the lowest luminosities and obscuration levels, and relatively low gas densities (n_e), suggesting that these objects harbor black holes that are relatively massive yet weakly active or inefficient in their accretion, probably due to the insufficiency of their fuel supply. Seyferts, which have low r_0, are luminous and show large n_e, suggesting that their black holes are less massive but accrete quickly and efficiently enough to clearly dominate the ionization. The low r_0 of the H II galaxies can be understood as a consequence of both the morphology-density and star formation rate-density relations, however, their spectral properties suggest that their centers hide amidst large amounts of obscuring material black holes of generally low mass whose activity remains relatively feeble. Our own Milky Way may be a typical such case.[abridged]Comment: 27 pages, color figures, some are severely degraded in resolution, emulateapj. See http://www.physics.drexel.edu/~constant/work/agnclustering.ps for high resolution version. Accepted to Ap

    The Seyfert Population in the Local Universe

    Full text link
    The magnitude-limited catalog of the Southern Sky Redshift Survey (SSRS2), is used to characterize the properties of galaxies hosting Active Galactic Nuclei. Using emission-line ratios, we identify a total of 162 (3%) Seyfert galaxies out of the parent sample with 5399 galaxies. The sample contains 121 Seyfert 2 galaxies and 41 Seyfert 1. The SSRS2 Seyfert galaxies are predominantly in spirals of types Sb and earlier, or in galaxies with perturbed appearance as the result of strong interactions or mergers. Seyfert galaxies in this sample are twice as common in barred hosts than the non-Seyferts. By assigning galaxies to groups using a percolation algorithm we find that the Seyfert galaxies in the SSRS2 are more likely to be found in binary systems, when compared to galaxies in the SSRS2 parent sample. However, there is no statistically significant difference between the Seyfert and SSRS2 parent sample when systems with more than 2 galaxies are considered. The analysis of the present sample suggests that there is a stronger correlation between the presence of the AGN phenomenon with internal properties of galaxies (morphology, presence of bar, luminosity) than with environmental effects (local galaxy density, group velocity dispersion, nearest neighbor distance).Comment: 35 pages, 13 figures, Accepted to be publised in Astronomical Journa

    Active Galactic Nuclei in Void Regions

    Full text link
    We present a comprehensive study of accretion activity in the most underdense environments in the universe, the voids, based on the SDSS DR2 data. Based on investigations of multiple void regions, we show that AGN's occurrence rate and properties differ from those in walls. AGN are more common in voids than in walls, but only among moderately luminous and massive galaxies (M_r < -20, log M_*/M_sun < 10.5), and this enhancement is more pronounced for the weakly accreting systems (i.e., L_[O III] < 10^39 erg/s). Void AGN hosted by moderately massive and luminous galaxies are accreting at equal or lower rates than their wall counterparts, show less obscuration than in walls, and similarly aged stellar populations. The very few void AGN in massive bright hosts accrete more strongly, are more obscured, and are associated with younger stellar emission than wall AGN. Thus, accretion strength is probably connected to the availability of fuel supply, and accretion and star-formation co-evolve and rely on the same source of fuel. Nearest neighbor statistics indicate that the weak accretion activity (LINER-like) is not influenced by the local environment. However, H IIs, Seyferts, and Transition objects prefer more grouped small scale structures, indicating that the rate at which galaxies interact with each other affects their activity. These trends support a potential H II -> Seyfert/Transition Object -> LINER evolutionary sequence that we show is apparent in many properties of actively line-emitting galaxies, in both voids and walls. The subtle differences between void and wall AGN might be explained by a longer, less disturbed duty cycle of these systems in voids.Comment: 19 pages, 7 figures (1 color); to appear in ApJ, submitted on May 11, 200

    UGC 3995: A Close Pair of Spiral Galaxies

    Get PDF
    UGC 3995 is a close pair of spiral galaxies whose eastern component hosts a Seyfert 2 nucleus. We present a detailed analysis of this system using long slit spectroscopy and narrow (\ha + \nii) as well as broad band (B, R) imaging and an archive WFPC2 image. The component galaxies reveal surprisingly small signs of interaction considering their spatial proximity and almost identical recession velocities, as the bright filament is probably an optical illusion due to the superposition of the bar of the Seyfert galaxy and of the spiral arms of the companion. The broad band morphology, a B--R color map, and a continuum-subtracted \ha + \nii image demonstrate that the western component UGC 3995B is in front of the Seyfert-hosting component UGC 3995A, partly obscuring its western side. The small radial velocity difference leaves the relative motion of the two galaxies largely unconstrained. The observed lack of major tidal deformations, along with some morphological peculiarities, suggests that the galaxies are proximate in space but may have recently approached each other on the plane of the sky. The geometry of the system and the radial velocity curve at P. A. = 106 suggest that the encounter may be retrograde or, alternatively, prograde before perigalacticon. The partial overlap of the two galaxies allows us to estimate the optical thickness of the disk of component B. We derive an extinction = 0.18 visual magnitudes in the infra-arms parts of the foreground galaxy disk, and >= 1-1.5 visual magnitudes in correspondence of the spiral arms.Comment: Accepted for publication in the Astronomical Journal (June 1999 issue

    Stellar Kinematics and Structural Properties of Virgo Cluster Dwarf Early-Type Galaxies from the SMAKCED Project. I. Kinematically Decoupled Cores and Implications for Infallen Groups in Clusters

    Full text link
    We present evidence for kinematically decoupled cores (KDCs) in two dwarf early-type (dE) galaxies in the Virgo cluster, VCC 1183 and VCC 1453, studied as part of the SMAKCED stellar absorption-line spectroscopy and imaging survey. These KDCs have radii of 1.8'' (0.14 kpc) and 4.2'' (0.33 kpc), respectively. Each of these KDCs is distinct from the main body of its host galaxy in two ways: (1) inverted sense of rotation; and (2) younger (and possibly more metal-rich) stellar population. The observed stellar population differences are probably associated with the KDC, although we cannot rule out the possibility of intrinsic radial gradients in the host galaxy. We describe a statistical analysis method to detect, quantify the significance of, and characterize KDCs in long-slit rotation curve data. We apply this method to the two dE galaxies presented in this paper and to five other dEs for which KDCs have been reported in the literature. Among these seven dEs, there are four significant KDC detections, two marginal KDC detections, and one dE with an unusual central kinematic anomaly that may be an asymmetric KDC.The frequency of occurence of KDCs and their properties provide important constraints on the formation history of their host galaxies. We discuss different formation scenarios for these KDCs in cluster environments and find that dwarf-dwarf wet mergers or gas accretion can explain the properties of these KDCs. Both of these mechanisms require that the progenitor had a close companion with a low relative velocity. This suggests that KDCs were formed in galaxy pairs residing in a poor group environment or in isolation whose subsequent infall into the cluster quenched star formation.Comment: 14 pages, accepted for publication in Ap

    HST Observations of the Serendipitous X-ray Companion to Mrk 273: Cluster at z=0.46?

    Get PDF
    We have used HST I-band images to identify Mrk 273X, the very unusual high-redshift X-ray-luminous Seyfert 2 galaxy found by ROSAT in the same field-of-view as Mrk 273. We have measured the photometric properties of Mrk 273X and have also analyzed the luminosity distribution of the faint galaxy population seen in the HST image. The luminosity of the galaxy and the properties of the surrounding environment suggest that Mrk 273X is the brightest galaxy in a relatively poor cluster at a redshift near 0.46. Its off-center location in the cluster and the presence of other galaxy groupings in the HST image may indicate that this is a dynamically young cluster on the verge of merging with its neighboring clusters. We find that Mrk 273X is a bright featureless elliptical galaxy with no evidence for a disk. It follows the de Vaucouleurs (r^{1/4}) surface brightness law very well over a range of 8 magnitudes. Though the surface brightness profile does not appear to be dominated by the AGN, the galaxy has very blue colors that do appear to be produced by the AGN. Mrk 273X is most similar to the IC 5063 class of active galaxies --- a hybrid Sy 2 / powerful radio galaxy.Comment: Accepted for publication in the Astrophysical Journal. 8 pages, including 4 postscript figures. Uses emulateapj.sty and psfig.sty. Higher quality version of Figure 1 is available at http://rings.gsfc.nasa.gov/~borne/fig1-markgals.gi

    Multicolour Optical Imaging of IR-Warm Seyfert Galaxies. V. Morphologies and Interactions. Challenging the Orientation Model

    Get PDF
    This paper is the last in a series, investigating the optical properties of a sample of mid-IR Warm Seyfert galaxies and of a control sample of mid-IR cold galaxies. In the present paper we parametrize the morphologies and interaction properties of the host galaxies and combine these with the major conclusions in our previous papers. Our results confirm that nuclear activity is linked to galactic interactions. We suggest an alternative view for the simple orientation-obscuration model postulated for Seyfert types 1 and 2, that takes into account the time evolution of their environmental and morphological properties. Within this view, an evolutionary link between starburst-dominated and AGN-dominated IR emission is also suggested, to account for the observational discriminator (mid-IR excess) between our Warm and Cold samples.Comment: 24 pages, including 6 figures and 3 tables (figure 5 included as independent file), Submitted to Ap

    Boxy/peanut/X bulges, barlenses and the thick part of galactic bars: What are they and how did they form?

    Full text link
    Bars have a complex three-dimensional shape. In particular their inner part is vertically much thicker than the parts further out. Viewed edge-on, the thick part of the bar is what is commonly known as a boxy-, peanut- or X- bulge and viewed face-on it is referred to as a barlens. These components are due to disc and bar instabilities and are composed of disc material. I review here their formation, evolution and dynamics, using simulations, orbital structure theory and comparisons to observations.Comment: 21 pages, 7 figures, invited review to appear in "Galactic Bulges", E. Laurikainen, R. Peletier, D. Gadotti, (eds.), Springe
    • …
    corecore