21 research outputs found

    Parathyroid hormone PTH(1–34) increases the volume, mineral content, and mechanical properties of regenerated mineralizing tissue after distraction osteogenesis in rabbits

    Get PDF
    Background and purpose Parathyroid hormone (PTH) has attracted considerable interest as a bone anabolic agent. Recently, it has been suggested that PTH can also enhance bone repair after fracture and distraction osteogenesis. We analyzed bone density and strength of the newly regenerated mineralized tissue after intermittent treatment with PTH in rabbits, which undergo Haversian bone remodeling similar to that in humans

    Recruitment in the sea: bacterial genes required for inducing larval settlement in a polychaete worm

    Get PDF
    Metamorphically competent larvae of the marine tubeworm Hydroides elegans can be induced to metamorphose by biofilms of the bacterium Pseudoalteromonas luteoviolacea strain HI1. Mutational analysis was used to identify four genes that are necessary for metamorphic induction and encode functions that may be related to cell adhesion and bacterial secretion systems. No major differences in biofilm characteristics, such as biofilm cell density, thickness, biomass and EPS biomass, were seen between biofilms composed of P. luteoviolacea (HI1) and mutants lacking one of the four genes. The analysis indicates that factors other than those relating to physical characteristics of biofilms are critical to the inductive capacity of P. luteoviolacea (HI1), and that essential inductive molecular components are missing in the non-inductive deletion-mutant strains

    Embryo fossilization is a biological process mediated by microbial biofilms

    No full text
    Fossilized embryos with extraordinary cellular preservation appear in the Late Neoproterozoic and Cambrian, coincident with the appearance of animal body fossils. It has been hypothesized that microbial processes are responsible for preservation and mineralization of organic tissues. However, the actions of microbes in preservation of embryos have not been demonstrated experimentally. Here, we show that bacterial biofilms assemble rapidly in dead marine embryos and form remarkable pseudomorphs in which the bacterial biofilm replaces and exquisitely models details of cellular organization and structure. The experimental model was the decay of cleavage stage embryos similar in size and morphology to fossil embryos. The data show that embryo preservation takes place in 3 distinct steps: (i) blockage of autolysis by reducing or anaerobic conditions, (ii) rapid formation of microbial biofilms that consume the embryo but form a replica that retains cell organization and morphology, and (iii) bacterially catalyzed mineralization. Major bacterial taxa in embryo decay biofilms were identified by using 16S rDNA sequencing. Decay processes were similar in different taphonomic conditions, but the composition of bacterial populations depended on specific conditions. Experimental taphonomy generates preservation states similar to those in fossil embryos. The data show how fossilization of soft tissues in sediments can be mediated by bacterial replacement and mineralization, providing a foundation for experimentally creating biofilms from defined microbial species to model fossilization as a biological process
    corecore