1,924 research outputs found

    Chemical turbulence equivalent to Nikolavskii turbulence

    Get PDF
    We find evidence that a certain class of reaction-diffusion systems can exhibit chemical turbulence equivalent to Nikolaevskii turbulence. The distinctive characteristic of this type of turbulence is that it results from the interaction of weakly stable long-wavelength modes and unstable short-wavelength modes. We indirectly study this class of reaction-diffusion systems by considering an extended complex Ginzburg-Landau (CGL) equation that was previously derived from this class of reaction-diffusion systems. First, we show numerically that the power spectrum of this CGL equation in a particular regime is qualitatively quite similar to that of the Nikolaevskii equation. Then, we demonstrate that the Nikolaevskii equation can in fact be obtained from this CGL equation through a phase reduction procedure applied in the neighborhood of a codimension-two Turing--Benjamin-Feir point.Comment: 10 pages, 3 figure

    Chimera Ising Walls in Forced Nonlocally Coupled Oscillators

    Full text link
    Nonlocally coupled oscillator systems can exhibit an exotic spatiotemporal structure called chimera, where the system splits into two groups of oscillators with sharp boundaries, one of which is phase-locked and the other is phase-randomized. Two examples of the chimera states are known: the first one appears in a ring of phase oscillators, and the second one is associated with the two-dimensional rotating spiral waves. In this article, we report yet another example of the chimera state that is associated with the so-called Ising walls in one-dimensional spatially extended systems, which is exhibited by a nonlocally coupled complex Ginzburg-Landau equation with external forcing.Comment: 7 pages, 5 figures, to appear in Phys. Rev.

    Synchronization in networks of networks: the onset of coherent collective behavior in systems of interacting populations of heterogeneous oscillators

    Full text link
    The onset of synchronization in networks of networks is investigated. Specifically, we consider networks of interacting phase oscillators in which the set of oscillators is composed of several distinct populations. The oscillators in a given population are heterogeneous in that their natural frequencies are drawn from a given distribution, and each population has its own such distribution. The coupling among the oscillators is global, however, we permit the coupling strengths between the members of different populations to be separately specified. We determine the critical condition for the onset of coherent collective behavior, and develop the illustrative case in which the oscillator frequencies are drawn from a set of (possibly different) Cauchy-Lorentz distributions. One motivation is drawn from neurobiology, in which the collective dynamics of several interacting populations of oscillators (such as excitatory and inhibitory neurons and glia) are of interest.Comment: The original was replaced with a version that has been accepted to Phys. Rev. E. The new version has the same content, but the title, abstract, and the introductory text have been revise

    An experimental route to spatiotemporal chaos in an extended 1D oscillators array

    Get PDF
    We report experimental evidence of the route to spatiotemporal chaos in a large 1D-array of hotspots in a thermoconvective system. Increasing the driving force, a stationary cellular pattern becomes unstable towards a mixed pattern of irregular clusters which consist of time-dependent localized patterns of variable spatiotemporal coherence. These irregular clusters coexist with the basic cellular pattern. The Fourier spectra corresponding to this synchronization transition reveals the weak coupling of a resonant triad. This pattern saturates with the formation of a unique domain of great spatiotemporal coherence. As we further increase the driving force, a supercritical bifurcation to a spatiotemporal beating regime takes place. The new pattern is characterized by the presence of two stationary clusters with a characteristic zig-zag geometry. The Fourier analysis reveals a stronger coupling and enables to find out that this beating phenomena is produced by the splitting of the fundamental spatiotemporal frequencies in a narrow band. Both secondary instabilities are phase-like synchronization transitions with global and absolute character. Far beyond this threshold, a new instability takes place when the system is not able to sustain the spatial frequency splitting, although the temporal beating remains inside these domains. These experimental results may support the understanding of other systems in nature undergoing similar clustering processes.Comment: 12 pages, 13 figure

    Hole Structures in Nonlocally Coupled Noisy Phase Oscillators

    Full text link
    We demonstrate that a system of nonlocally coupled noisy phase oscillators can collectively exhibit a hole structure, which manifests itself in the spatial phase distribution of the oscillators. The phase model is described by a nonlinear Fokker-Planck equation, which can be reduced to the complex Ginzburg-Landau equation near the Hopf bifurcation point of the uniform solution. By numerical simulations, we show that the hole structure clearly appears in the space-dependent order parameter, which corresponds to the Nozaki-Bekki hole solution of the complex Ginzburg-Landau equation.Comment: 4 pages, 4 figures, to appear in Phys. Rev.

    Collective Phase Sensitivity

    Full text link
    The collective phase response to a macroscopic external perturbation of a population of interacting nonlinear elements exhibiting collective oscillations is formulated for the case of globally-coupled oscillators. The macroscopic phase sensitivity is derived from the microscopic phase sensitivity of the constituent oscillators by a two-step phase reduction. We apply this result to quantify the stability of the macroscopic common-noise induced synchronization of two uncoupled populations of oscillators undergoing coherent collective oscillations.Comment: 6 pages, 3 figure

    Multistable attractors in a network of phase oscillators with three-body interaction

    Full text link
    Three-body interactions have been found in physics, biology, and sociology. To investigate their effect on dynamical systems, as a first step, we study numerically and theoretically a system of phase oscillators with three-body interaction. As a result, an infinite number of multistable synchronized states appear above a critical coupling strength, while a stable incoherent state always exists for any coupling strength. Owing to the infinite multistability, the degree of synchrony in asymptotic state can vary continuously within some range depending on the initial phase pattern.Comment: 5 pages, 3 figure

    Chimera States for Coupled Oscillators

    Full text link
    Arrays of identical oscillators can display a remarkable spatiotemporal pattern in which phase-locked oscillators coexist with drifting ones. Discovered two years ago, such "chimera states" are believed to be impossible for locally or globally coupled systems; they are peculiar to the intermediate case of nonlocal coupling. Here we present an exact solution for this state, for a ring of phase oscillators coupled by a cosine kernel. We show that the stable chimera state bifurcates from a spatially modulated drift state, and dies in a saddle-node bifurcation with an unstable chimera.Comment: 4 pages, 4 figure

    Entrainment transition in populations of random frequency oscillators

    Full text link
    The entrainment transition of coupled random frequency oscillators is revisited. The Kuramoto model (global coupling) is shown to exhibit unusual sample-dependent finite size effects leading to a correlation size exponent νˉ=5/2\bar\nu=5/2. Simulations of locally coupled oscillators in dd-dimensions reveal two types of frequency entrainment: mean-field behavior at d>4d>4, and aggregation of compact synchronized domains in three and four dimensions. In the latter case, scaling arguments yield a correlation length exponent ν=2/(d2)\nu=2/(d-2), in good agreement with numerical results.Comment: published versio

    Paths to Synchronization on Complex Networks

    Full text link
    The understanding of emergent collective phenomena in natural and social systems has driven the interest of scientists from different disciplines during decades. Among these phenomena, the synchronization of a set of interacting individuals or units has been intensively studied because of its ubiquity in the natural world. In this paper, we show how for fixed coupling strengths local patterns of synchronization emerge differently in homogeneous and heterogeneous complex networks, driving the process towards a certain global synchronization degree following different paths. The dependence of the dynamics on the coupling strength and on the topology is unveiled. This study provides a new perspective and tools to understand this emerging phenomena.Comment: Final version published in Physical Review Letter
    corecore