1,420 research outputs found
Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons
We present a unified approach for qualitative and quantitative analysis of
stability and instability dynamics of positive bright solitons in
multi-dimensional focusing nonlinear media with a potential (lattice), which
can be periodic, periodic with defects, quasiperiodic, single waveguide, etc.
We show that when the soliton is unstable, the type of instability dynamic that
develops depends on which of two stability conditions is violated.
Specifically, violation of the slope condition leads to an amplitude
instability, whereas violation of the spectral condition leads to a drift
instability. We also present a quantitative approach that allows to predict the
stability and instability strength
Bifurcations and stability of gap solitons in periodic potentials
We analyze the existence, stability, and internal modes of gap solitons in
nonlinear periodic systems described by the nonlinear Schrodinger equation with
a sinusoidal potential, such as photonic crystals, waveguide arrays,
optically-induced photonic lattices, and Bose-Einstein condensates loaded onto
an optical lattice. We study bifurcations of gap solitons from the band edges
of the Floquet-Bloch spectrum, and show that gap solitons can appear near all
lower or upper band edges of the spectrum, for focusing or defocusing
nonlinearity, respectively. We show that, in general, two types of gap solitons
can bifurcate from each band edge, and one of those two is always unstable. A
gap soliton corresponding to a given band edge is shown to possess a number of
internal modes that bifurcate from all band edges of the same polarity. We
demonstrate that stability of gap solitons is determined by location of the
internal modes with respect to the spectral bands of the inverted spectrum and,
when they overlap, complex eigenvalues give rise to oscillatory instabilities
of gap solitons.Comment: 18 pages, 11 figures; updated bibliograph
Caloric curve in Au + Au collisions
Realistic caloric curves are obtained for  reaction with
incident energy ranging from 35 to 130 MeV/nucleon in the dynamic statistical
multifragmentation model. It is shown that for excitation energy 3 to 8
MeV/nucleon, the temperature remains constant in the range 5 to 6 MeV, which is
close to experiment. The mechanism of energy deposition through the
tripartition of colliding system envisaged in this model together with
inter-fragment nuclear interaction are found to play important role. A possible
signature of liquid-gas phase transition is seen in the specific heat
distribution calculated from these caloric curves, and the critical temperature
is found to be  6 to 6.5 MeV.Comment: Revtex, 10 pages, 4 postscipt figures, To appear in Phys. Rev. C
  (Rapid Communications
Belle II Technical Design Report
The Belle detector at the KEKB electron-positron collider has collected
almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an
upgrade of KEKB is under construction, to increase the luminosity by two orders
of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2
/s luminosity. To exploit the increased luminosity, an upgrade of the Belle
detector has been proposed. A new international collaboration Belle-II, is
being formed. The Technical Design Report presents physics motivation, basic
methods of the accelerator upgrade, as well as key improvements of the
detector.Comment: Edited by: Z. Dole\v{z}al and S. Un
The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer-Verlag 2008.In the nuclei of human lymphocytes, chromosome territories are distributed according to the average gene density of each chromosome. However, chromosomes are very heterogeneous in size and base composition, and can contain both very gene-dense and very gene-poor regions. Thus, a precise analysis of chromosome organisation in the nuclei should consider also the distribution of DNA belonging to the chromosomal bands in each chromosome. To improve our understanding of the chromatin organisation, we localised chromosome 7 DNA regions, endowed with different gene densities, in the nuclei of human lymphocytes. Our results showed that this chromosome in cell nuclei is arranged radially with the gene-dense/GC-richest regions exposed towards the nuclear interior and the gene-poorest/GC-poorest ones located at the nuclear periphery. Moreover, we found that chromatin fibres from the 7p22.3 and the 7q22.1 bands are not confined to the territory of the bulk of this chromosome, protruding towards the inner part of the nucleus. Overall, our work demonstrates the radial arrangement of the territory of chromosome 7 in the lymphocyte nucleus and confirms that human genes occupy specific radial positions, presumably to enhance intra- and inter-chromosomal interaction among loci displaying a similar expression pattern, and/or similar replication timing
Determination of alpha_s using Jet Rates at LEP with the OPAL detector
Hadronic events produced in e+e- collisions by the LEP collider and recorded
by the OPAL detector were used to form distributions based on the number of
reconstructed jets. The data were collected between 1995 and 2000 and
correspond to energies of 91 GeV, 130-136 GeV and 161-209 GeV. The jet rates
were determined using four different jet-finding algorithms (Cone, JADE, Durham
and Cambridge). The differential two-jet rate and the average jet rate with the
Durham and Cambridge algorithms were used to measure alpha(s) in the LEP energy
range by fitting an expression in which order alpah_2s calculations were
matched to a NLLA prediction and fitted to the data. Combining the measurements
at different centre-of-mass energies, the value of alpha_s (Mz) was determined
to be
alpha(s)(Mz)=0.1177+-0.0006(stat.)+-0.0012$(expt.)+-0.0010(had.)+-0.0032(theo.)
\.Comment: 40 pages, 17 figures, Submitted to Euro. Phys. J. 
Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions
The HERA-B collaboration has studied the production of charmonium and open
charm states in collisions of 920 GeV protons with wire targets of different
materials. The acceptance of the HERA-B spectrometer covers negative values of
xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8
GeV/c. The studies presented in this paper include J/psi differential
distributions and the suppression of J/psi production in nuclear media.
Furthermore, production cross sections and cross section ratios for open charm
mesons are discussed.Comment: 5 pages, 9 figures, to be published in the proceedings of the 6th
  International Conference on Hyperons, Charm & Beauty Hadrons (BEACH04),
  Chicago, IL, June 27 - July 3, 200
Colour reconnection in e+e- -> W+W- at sqrt(s) = 189 - 209 GeV
The effects of the final state interaction phenomenon known as colour
reconnection are investigated at centre-of-mass energies in the range sqrt(s) ~
189-209 GeV using the OPAL detector at LEP. Colour reconnection is expected to
affect observables based on charged particles in hadronic decays of W+W-.
Measurements of inclusive charged particle multiplicities, and of their angular
distribution with respect to the four jet axes of the events, are used to test
models of colour reconnection. The data are found to exclude extreme scenarios
of the Sjostrand-Khoze Type I (SK-I) model and are compatible with other
models, both with and without colour reconnection effects. In the context of
the SK-I model, the best agreement with data is obtained for a reconnection
probability of 37%. Assuming no colour reconnection, the charged particle
multiplicity in hadronically decaying W bosons is measured to be (nqqch) =
19.38+-0.05(stat.)+-0.08 (syst.).Comment: 30 pages, 9 figures, Submitted to Euro. Phys. J. 
Scaling violations of quark and gluon jet fragmentation functions in e+e- annihilations at sqrt(s) = 91.2 and 183-209 GeV
Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and
flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are
measured in e+e- annihilations from data collected at centre-of-mass energies
of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are
defined by hemispheres of inclusive hadronic events, while the biased jet
measurements are based on three-jet events selected with jet algorithms.
Several methods are employed to extract the fragmentation functions over a wide
range of scales. Possible biases are studied in the results are obtained. The
fragmentation functions are compared to results from lower energy e+e-
experiments and with earlier LEP measurements and are found to be consistent.
Scaling violations are observed and are found to be stronger for the
fragmentation functions of gluon jets than for those of quarks. The measured
fragmentation functions are compared to three recent theoretical
next-to-leading order calculations and to the predictions of three Monte Carlo
event generators. While the Monte Carlo models are in good agreement with the
data, the theoretical predictions fail to describe the full set of results, in
particular the b and gluon jet measurements.Comment: 46 pages, 17 figures, Submitted to Eur. Phys J. 
Circumstantial Evidence for a Critical Behavior in Peripheral Au + Au Collisions at 35 MeV/nucleon
The fragmentation resulting from peripheral Au + Au collisions at an incident
energy of E = 35 MeV/nucleon is investigated. A power-law charge distribution,
 with , and an intermittency signal are observed
for events selected in the region of the Campi scatter plot where "critical"
behavior is expected.Comment: 11 pages, RevTex file, 4 postscript figures available upon request
  from [email protected]
- …
