4 research outputs found

    Advances in Understanding Environmental Risks of Red Mud After the Ajka Spill, Hungary

    Get PDF
    In the 5 years since the 2010 Ajka red mud spill (Hungary), there have been 46 scientific studies assessing the key risks and impacts associated with the largest single release of bauxite-processing residue (red mud) to the environment. These studies have provided insight into the main environmental concerns, as well as the effectiveness of remedial efforts that can inform future management of red mud elsewhere. The key immediate risks after the spill were associated with the highly caustic nature of the red mud slurry and fine particle size, which once desiccated, could generate fugitive dust. Studies on affected populations showed no major hazards identified beyond caustic exposure, while red mud dust risks were considered equal to or lesser than those provided by urban dusts of similar particle size distribution. The longer-term environmental risks were related to the saline nature of the spill material (salinization of inundated soils) and the release and the potential cycling of oxyanion-forming metals and metalloids (e.g., Al, As, Cr, Mo, and V) in the soil–water environment. Of these, those that are soluble at high pH, inefficiently removed from solution during dilution and likely to be exchangeable at ambient pH are of chief concern (e.g., Mo and V). Various ecotoxicological studies have identified negative impacts of red mud-amended soils and sediments at high volumes (typically [5 %) on different test organisms, with some evidence of molecularlevel impacts at high dose (e.g., genotoxic effects on plants and mice). These data provide a valuable database to inform future toxicological studies for red mud. However, extensive management efforts in the aftermath of the spill greatly limited these exposure risks through leachate neutralization and red mud recovery from the affected land. Monitoring of affected soils, stream sediments, waters and aquatic biota (fungi, invertebrates and fish) have all shown a very rapid recovery toward prespill conditions. The accident also prompted research that has also highlighted potential benefits of red mud use for critical raw material recovery (e.g., Ga, Co, V, rare earths, inform), carbon sequestration, biofuel crop production, and use as a soil ameliorant

    Leaf litter decomposition in Torna stream before and after a red mud disaster

    No full text
    The aim of the study was to estimate the breakdown of the allochthonous litter in an artificial stream running in an agricultural area and compare it with the same values following a toxic mud spill into the same stream. Litter bags were filled with three types of leaves (Quercus robur, Populus tremula and Salix alba) and placed to the bottom of the river. Ergosterol was used to detect fungal biomass. We supposed the absence of fungi and the retardation of leaf litter decomposition. Only pH and conductivity increased significantly. Leaf mass loss after the catastrophe was much slower than in 2009 and the decay curves did not follow the exponential decay model. Prior to the catastrophe, leaf mass loss was fast in Torna, compared to other streams in the area. The reason is that the stream is modified, the bed is trapezoid and covered with concrete stones. Fungal biomass was lower, than in the pre-disaster experiment, because fungi did not have enough leaves to sporulate. Leaf mass loss followed the exponential decay curve before the disaster, but after that it was possible only after a non-change period
    corecore