2,936 research outputs found

    On the location of the surface-attached globule phase in collapsing polymers

    Full text link
    We investigate the existence and location of the surface phase known as the "Surface-Attached Globule" (SAG) conjectured previously to exist in lattice models of three-dimensional polymers when they are attached to a wall that has a short range potential. The bulk phase, where the attractive intra-polymer interactions are strong enough to cause a collapse of the polymer into a liquid-like globule and the wall either has weak attractive or repulsive interactions, is usually denoted Desorbed-Collapsed or DC. Recently this DC phase was conjectured to harbour two surface phases separated by a boundary where the bulk free energy is analytic while the surface free energy is singular. The surface phase for more attractive values of the wall interaction is the SAG phase. We discuss more fully the properties of this proposed surface phase and provide Monte Carlo evidence for self-avoiding walks up to length 256 that this surface phase most likely does exist. Importantly, we discuss alternatives for the surface phase boundary. In particular, we conclude that this boundary may lie along the zero wall interaction line and the bulk phase boundaries rather than any new phase boundary curve.Comment: slightly extended versio

    The competition of hydrogen-like and isotropic interactions on polymer collapse

    Full text link
    We investigate a lattice model of polymers where the nearest-neighbour monomer-monomer interaction strengths differ according to whether the local configurations have so-called ``hydrogen-like'' formations or not. If the interaction strengths are all the same then the classical θ\theta-point collapse transition occurs on lowering the temperature, and the polymer enters the isotropic liquid-drop phase known as the collapsed globule. On the other hand, strongly favouring the hydrogen-like interactions give rise to an anisotropic folded (solid-like) phase on lowering the temperature. We use Monte Carlo simulations up to a length of 256 to map out the phase diagram in the plane of parameters and determine the order of the associated phase transitions. We discuss the connections to semi-flexible polymers and other polymer models. Importantly, we demonstrate that for a range of energy parameters two phase transitions occur on lowering the temperature, the second being a transition from the globule state to the crystal state. We argue from our data that this globule-to-crystal transition is continuous in two dimensions in accord with field-theory arguments concerning Hamiltonian walks, but is first order in three dimensions

    Layering transitions for adsorbing polymers in poor solvents

    Full text link
    An infinite hierarchy of layering transitions exists for model polymers in solution under poor solvent or low temperatures and near an attractive surface. A flat histogram stochastic growth algorithm known as FlatPERM has been used on a self- and surface interacting self-avoiding walk model for lengths up to 256. The associated phases exist as stable equilibria for large though not infinite length polymers and break the conjectured Surface Attached Globule phase into a series of phases where a polymer exists in specified layer close to a surface. We provide a scaling theory for these phases and the first-order transitions between them.Comment: 4 pages, 4 figure

    Stretching of a chain polymer adsorbed at a surface

    Full text link
    In this paper we present simulations of a surface-adsorbed polymer subject to an elongation force. The polymer is modelled by a self-avoiding walk on a regular lattice. It is confined to a half-space by an adsorbing surface with attractions for every vertex of the walk visiting the surface, and the last vertex is pulled perpendicular to the surface by a force. Using the recently proposed flatPERM algorithm, we calculate the phase diagram for a vast range of temperatures and forces. The strength of this algorithm is that it computes the complete density of states from one single simulation. We simulate systems of sizes up to 256 steps.Comment: 13 pages, 7 figure

    Charakterystyka roznych form zajec wychowania fizycznego w centrum kultury fizycznej umcs w Lublinie

    Get PDF
    Szkoła wyższa jest niezależną jednostką, określającą program nauczania i zakres realizowanych zadań edukacyjnych. Decyduje także o rozwoju kultury fizycznej na uczelni, a do jej zadań należy stworzenie odpowiednich warunków. Aktualnie system szkolnictwa wyższego potwierdza konieczność podejmowania działań mających na celu ustawiczne podnoszenie jakości kształcenia. Wychodząc z takiego założenia Centrum Kultury Fizycznej wychodzi naprzeciw oczekiwań studentów i dokonuje zmian w organizacji zajęć wychowania fizycznego w Uniwersytecie Marii Curie Skłodowskiej w Lublinie przygotowując ofertę zajęć dydaktycznych

    Pulling absorbing and collapsing polymers from a surface

    Full text link
    A self-interacting polymer with one end attached to a sticky surface has been studied by means of a flat-histogram stochastic growth algorithm known as FlatPERM. We examined the four-dimensional parameter space of the number of monomers up to 91, self-attraction, surface attraction and force applied to an end of the polymer. Using this powerful algorithm the \emph{complete} parameter space of interactions and force has been considered. Recently it has been conjectured that a hierarchy of states appears at low temperature/poor solvent conditions where a polymer exists in a finite number of layers close to a surface. We find re-entrant behaviour from a stretched phase into these layering phases when an appropriate force is applied to the polymer. We also find that, contrary to what may be expected, the polymer desorbs from the surface when a sufficiently strong critical force is applied and does \emph{not} transcend through either a series of de-layering transitions or monomer-by-monomer transitions.Comment: 4 pages, 4 figure

    Raport z badań wykonanych przez centrum kultury fizycznej UMCS, dotyczących oceny zdrowia studentów – styczeń 2017 r.

    Get PDF
    Celem badań była ocena wskaźników fizjologiczne charakteryzujące zdrowie, w tym parametrów antropometrycznych, komponentów tkankowych ciała i wydolności fizycznej
    corecore