7 research outputs found

    Intercellular calcium-mediated cell signaling in keratinocytes cultured from patients with NF1 or psoriasis

    No full text
    Abstract Neurofibromatosis type 1 syndrome (NF1) is caused by mutations of the NF1 gene. The NF1 protein (neurofibromin) contains a domain which is related to the GTPase-activating protein (GAP) and accelerates the switch of active Ras-GTP to inactive Ras-GDP. The NF1 protein has been referred to as a tumor suppressor, since the cells of malignant schwannomas of NF1 patients may display a loss of heterozygosity of the NF1 gene. Psoriasis is characterized by hyperproliferation of the epidermis and by down-regulated levels of NF1 mRNA and protein. Ca2+ is an universal signal transduction element modulating cell growth and differentiation. Many cell types coordinate their activities by transmitting waves of elevated intracellular calcium levels from cell to cell. The propagation of calcium waves had not been studied previously in human keratinocytes. Thus, the aim of the present study was to find out which pathways may play a role in Ca2+ signaling at different extracellular calcium concentrations in NF1 and and psoriatic keratinocytes versus normal control keratinocytes. The results demonstrated that NF1 and psoriatic keratinocytes have a tendency to form cultures characterized by altered Ca2+-mediated cell signaling compared to normal keratinocytes. Specifically, the main route of calcium-mediated signaling was gap-junctional in normal keratinocytes. In contrast, ATP-mediated calcium signaling predominated and capacitative calcium influx was defective in NF1 and psoriatic keratinocytes. The results of the present study suggest that mutations of the NF1 tumor suppressor gene or lowered levels of NF1 protein/mRNA may eventually lead to altered intercellular communication

    Recurrent febrile seizures and serum cytokines:a controlled follow-up study

    No full text
    Abstract Background: The role of cytokines in the pathogenesis of febrile seizures (FSs) is unclear, and information regarding cytokine production outside of FS episodes is scarce. Methods: In our controlled follow-up study of patients with FSs, we compared the levels of 12 serum cytokines after the patients’ first FSs, during febrile episodes without FSs, after recurrent FSs, during healthy periods after FSs, and between patients and controls. Results: Two-hundred fifty-one patients with first FS participated in the study, of whom 17 (mean age 1.6 years, SD 0.7) with recurrent FSs completed the protocol as required by the sample size calculations. The mean IL-1RA level was higher after the first FSs (2580 pg/mL, SD 1516) than during febrile episodes without FSs (1336 pg/mL, SD 1364, P = 0.006) and healthy periods after FSs (474 pg/mL, SD 901, P = 0.001). IL-1RA levels were also higher during first (2580 pg/mL) and recurrent FSs (2666 pg/mL, SD 1747) in comparison with febrile controls (746 pg/mL, SD 551) (P < 0.001 and P = 0.001, respectively), but there was no difference in the IL-1RA between febrile episodes without FSs and febrile controls. Conclusions: Patients with FSs produce stronger inflammatory reactions during febrile episodes with FSs compared with febrile episodes without FSs and febrile controls
    corecore