2,416 research outputs found

    Hegel\u27s Symbolic Stage: An Old Perspective on Contemporary Art

    Get PDF
    This paper proposes an evaluation of contemporary art works in light of some of the concepts embedded in Georg Wilhelm Friedrich Hegel’s symbolic stage. My belief is that an analysis of Hegel’s conditions for the affirmation of art opens the door to a discussion of contemporary artistic trends, a discussion that also takes distance from the (perhaps) abused question of what defines art. Art does more than question itself; art questions, and challenges, the nature of our perception

    Molecular Theory of Hydrophobic Effects: ``She is too mean to have her name repeated.''

    Get PDF
    This paper reviews the molecular theory of hydrophobic effects relevant to biomolecular structure and assembly in aqueous solution. Recent progress has resulted in simple, validated molecular statistical thermodynamic theories and clarification of confusing theories of decades ago. Current work is resolving effects of wider variations of thermodynamic state, e.g. pressure denaturation of soluble proteins, and more exotic questions such as effects of surface chemistry in treating stability of macromolecular structures in aqueous solutionComment: submitted to Ann. Rev. Phys. Chem., 31 pages, 245 references, 2 figure

    Kinetic regimes and limiting cases of gas uptake and heterogeneous reactions in atmospheric aerosols and clouds: a general classification scheme

    Get PDF
    Heterogeneous reactions are important to atmospheric chemistry and are therefore an area of intense research. In multiphase systems such as aerosols and clouds, chemical reactions are usually strongly coupled to a complex sequence of mass transport processes and results are often not easy to interpret. Here we present a systematic classification scheme for gas uptake by aerosol or cloud particles which distinguishes two major regimes: a reaction-diffusion regime and a mass transfer regime. Each of these regimes includes four distinct limiting cases, characterised by a dominant reaction location (surface or bulk) and a single rate-limiting process: chemical reaction, bulk diffusion, gas-phase diffusion or mass accommodation. The conceptual framework enables efficient comparison of different studies and reaction systems, going beyond the scope of previous classification schemes by explicitly resolving interfacial transport processes and surface reactions limited by mass transfer from the gas phase. The use of kinetic multi-layer models instead of resistor model approaches increases the flexibility and enables a broader treatment of the subject, including cases which do not fit into the strict limiting cases typical of most resistor model formulations. The relative importance of different kinetic parameters such as diffusion, reaction rate and accommodation coefficients in this system is evaluated by a quantitative global sensitivity analysis. We outline the characteristic features of each limiting case and discuss the potential relevance of different regimes and limiting cases for various reaction systems. In particular, the classification scheme is applied to three different datasets for the benchmark system of oleic acid reacting with ozone in order to demonstrate utility and highlight potential issues. In light of these results, future directions of research needed to elucidate the multiphase chemical kinetics in this and other reaction systems are discussed

    A novel model to predict the physical state of atmospheric H2SO4/NH3/H2O aerosol particles

    Get PDF
    Colberg CA, Luo BP, Wernli H, Koop T, Peter T. A novel model to predict the physical state of atmospheric H2SO4/NH3/H2O aerosol particles. ATMOSPHERIC CHEMISTRY AND PHYSICS. 2003;3(4):909-924.The physical state of the tropospheric aerosol is largely unknown despite its importance for cloud formation and for the aerosol's radiative properties. Here we use detailed microphysical laboratory measurements to perform a systematic global modelling study of the physical state of the H2SO4/NH3/H2O aerosol, which constitutes an important class of aerosols in the free troposphere. The Aerosol Physical State Model (APSM) developed here is based on Lagrangian trajectories computed from ECMWF (European Centre for Medium Range Weather Forecasts) analyses, taking full account of the deliquescence/efflorescence hysteresis. As input APSM requires three data sets: (i) deliquescence and efflorescence relative humidities from laboratory measurements, (ii) ammonia-to-sulfate ratios (ASR) calculated by a global circulation model, and (iii) relative humidities determined from the ECMWF analyses. APSM results indicate that globally averaged a significant fraction (17-57%) of the ammoniated sulfate aerosol particles contain solids with the ratio of solid-containing to purely liquid particles increasing with altitude (between 2 and 10 km). In our calculations the most abundant solid is letovicite, (NH4)(3)H(SO4)(2), while there is only little ammonium sulfate, (NH4)(2)SO4. Since ammonium bisulfate, NH4HSO4, does not nucleate homogeneously, it can only form via heterogeneous crystallization. As the ammonia-to-sulfate ratios of the atmospheric H2SO4/NH3/H2O aerosol usually do not correspond to the stoichiometries of known crystalline substances, all solids are expected to occur in mixed-phase aerosol particles. This work highlights the potential importance of letovicite, whose role as cloud condensation nucleus (CCN) and as scatterer of solar radiation remains to be scrutinized
    corecore