813 research outputs found

    Ecology of Thioploca spp.: Nitrate and sulfur storage in relation to chemical microgradients and influence of Thioploca spp. on the sedimentary nitrogen cycle

    No full text
    Microsensors, including a recently developed NO3 − biosensor, were applied to measure O2 and NO3 − profiles in marine sediments from the upwelling area off central Chile and to investigate the influence of Thioploca spp. on the sedimentary nitrogen metabolism. The studies were performed in undisturbed sediment cores incubated in a small laboratory flume to simulate the environmental conditions of low O2, high NO3 −, and bottom water current. On addition of NO3 −and NO2 −, Thioploca spp. exhibited positive chemotaxis and stretched out of the sediment into the flume water. In a core densely populated with Thioploca, the penetration depth of NO3 − was only 0.5 mm and a sharp maximum of NO3 − uptake was observed 0.5 mm above the sediment surface. In sediments with only fewThioploca spp., NO3 − was detectable down to a depth of 2 mm and the maximum consumption rates were observed within the sediment. No chemotaxis toward nitrous oxide (N2O) was observed, which is consistent with the observation that Thioploca does not denitrify but reduces intracellular NO3 − to NH4 +. Measurements of the intracellular NO3 − and S0 pools inThioploca filaments from various depths in the sediment gave insights into possible differences in the migration behavior between the different species. Living filaments containing significant amounts of intracellular NO3 − were found to a depth of at least 13 cm, providing final proof for the vertical shuttling of Thioploca spp. and nitrate transport into the sediment

    Echolocating bats emit a highly directional sonar sound beam in the field

    Get PDF
    Bats use echolocation or biosonar to navigate and find prey at night. They emit short ultrasonic calls and listen for reflected echoes. The beam width of the calls is central to the function of the sonar, but directionality of echolocation calls has never been measured from bats flying in the wild. We used a microphone array to record sounds and determine horizontal directionality for echolocation calls of the trawling Daubenton's bat, Myotis daubentonii, flying over a pond in its natural habitat. Myotis daubentonii emitted highly directional calls in the field. Directionality increased with frequency. At 40 kHz half-amplitude angle was 25°, decreasing to 14° at 75 kHz. In the laboratory, M. daubentonii emitted less intense and less directional calls. At 55 kHz half-amplitude angle was 40° in the laboratory versus 20° in the field. The relationship between frequency and directionality can be explained by the simple piston model. The model also suggests that the increase in the emitted intensity in the field is caused by the increased directionality, focusing sound energy in the forward direction. The bat may increase directionality by opening the mouth wider to emit a louder, narrower beam in the wild

    Economy, Movement Dynamics, and Muscle Activity of Human Walking at Different Speeds

    Get PDF
    The complex behaviour of human walking with respect to movement variability, economy and muscle activity is speed dependent. It is well known that a U-shaped relationship between walking speed and economy exists. However, it is an open question if the movement dynamics of joint angles and centre of mass and muscle activation strategy also exhibit a U-shaped relationship with walking speed. We investigated the dynamics of joint angle trajectories and the centre of mass accelerations at five different speeds ranging from 20 to 180% of the predicted preferred speed (based on Froude speed) in twelve healthy males. The muscle activation strategy and walking economy were also assessed. The movement dynamics was investigated using a combination of the largest Lyapunov exponent and correlation dimension. We observed an intermediate stage of the movement dynamics of the knee joint angle and the anterior-posterior and mediolateral centre of mass accelerations which coincided with the most energy-efficient walking speed. Furthermore, the dynamics of the joint angle trajectories and the muscle activation strategy was closely linked to the functional role and biomechanical constraints of the joints

    An investigation into procedural (in)variance in the valuation of mortality risk reductions

    Get PDF
    This study investigates whether elicited preferences are affected by the presentation of mortality risks in a stated preference survey. We elicited willingness to pay for public risk reducing initiatives under three different but outcome equivalent presentation format. Results from a discrete choice experiment demonstrate that presentation format influences the valuation of mortality risk reductions, which to varying degrees depends on the respondent's level of concern and numeracy. Marginal willingness to pay for a risk reduction increases significantly when framed in terms of avoided fatalities compared to corresponding frequencies. Furthermore, we find that less numerate respondents are more influenced by the inclusion of the number of fatalities in the presentation format. The same pattern is observed for respondents who express a higher degree of concern for a traffic accident

    Dynamics of competing heterogeneous clones in blood cancers explains multiple observations - a mathematical modeling approach

    Get PDF
    Heterogeneity of stem cell clones provide a key ingredient in altered hematopoiesis and is of main interest in the study of predisease states as well as in the development of blood cancers such as chronic myeloid leukemia (CML) and the Philadelphia-negative myeloprofilerative neoplasms (MPNs). A mathematical model based on biological mechanisms and basic cell descriptors such as proliferation rates and apoptosis rates is suggested, connecting stem cell dynamics with mature blood cells and immune mediated feedback. The flexible approach allows for arbitrary numbers of mutated stem cell clones with perturbed properties. In particular, the stem cell niche provides a competition between wild type and mutated stem cells. Hence, the stem cell niche can mediate suppression of the wild type clones and up-regulation of one or more malignant clones. The model is parameterized using clinical data to show typical disease progression in several blood cancers and the hematological and molecular response to treatment. Intriguingly, occasional oscillatory cell counts observed during treatment of CML and MPNs can be explained by heterogeneous stem cell clone dynamics. Thus, the vital heterogeneous stem cell dynamics may be inferred from mathematical modeling in synergy with clinical data to elucidate hematopoiesis, blood cancers and the outcome of interventions
    corecore