1,057 research outputs found

    Analysis and Optimization of Deep Counterfactual Value Networks

    Full text link
    Recently a strong poker-playing algorithm called DeepStack was published, which is able to find an approximate Nash equilibrium during gameplay by using heuristic values of future states predicted by deep neural networks. This paper analyzes new ways of encoding the inputs and outputs of DeepStack's deep counterfactual value networks based on traditional abstraction techniques, as well as an unabstracted encoding, which was able to increase the network's accuracy.Comment: Long version of publication appearing at KI 2018: The 41st German Conference on Artificial Intelligence (http://dx.doi.org/10.1007/978-3-030-00111-7_26). Corrected typo in titl

    Faster K-Means Cluster Estimation

    Full text link
    There has been considerable work on improving popular clustering algorithm `K-means' in terms of mean squared error (MSE) and speed, both. However, most of the k-means variants tend to compute distance of each data point to each cluster centroid for every iteration. We propose a fast heuristic to overcome this bottleneck with only marginal increase in MSE. We observe that across all iterations of K-means, a data point changes its membership only among a small subset of clusters. Our heuristic predicts such clusters for each data point by looking at nearby clusters after the first iteration of k-means. We augment well known variants of k-means with our heuristic to demonstrate effectiveness of our heuristic. For various synthetic and real-world datasets, our heuristic achieves speed-up of up-to 3 times when compared to efficient variants of k-means.Comment: 6 pages, Accepted at ECIR 201

    Compositional Verification for Autonomous Systems with Deep Learning Components

    Full text link
    As autonomy becomes prevalent in many applications, ranging from recommendation systems to fully autonomous vehicles, there is an increased need to provide safety guarantees for such systems. The problem is difficult, as these are large, complex systems which operate in uncertain environments, requiring data-driven machine-learning components. However, learning techniques such as Deep Neural Networks, widely used today, are inherently unpredictable and lack the theoretical foundations to provide strong assurance guarantees. We present a compositional approach for the scalable, formal verification of autonomous systems that contain Deep Neural Network components. The approach uses assume-guarantee reasoning whereby {\em contracts}, encoding the input-output behavior of individual components, allow the designer to model and incorporate the behavior of the learning-enabled components working side-by-side with the other components. We illustrate the approach on an example taken from the autonomous vehicles domain

    Solving kk-means on High-dimensional Big Data

    Full text link
    In recent years, there have been major efforts to develop data stream algorithms that process inputs in one pass over the data with little memory requirement. For the kk-means problem, this has led to the development of several (1+ε)(1+\varepsilon)-approximations (under the assumption that kk is a constant), but also to the design of algorithms that are extremely fast in practice and compute solutions of high accuracy. However, when not only the length of the stream is high but also the dimensionality of the input points, then current methods reach their limits. We propose two algorithms, piecy and piecy-mr that are based on the recently developed data stream algorithm BICO that can process high dimensional data in one pass and output a solution of high quality. While piecy is suited for high dimensional data with a medium number of points, piecy-mr is meant for high dimensional data that comes in a very long stream. We provide an extensive experimental study to evaluate piecy and piecy-mr that shows the strength of the new algorithms.Comment: 23 pages, 9 figures, published at the 14th International Symposium on Experimental Algorithms - SEA 201

    Privacy Preserving Multi-Server k-means Computation over Horizontally Partitioned Data

    Full text link
    The k-means clustering is one of the most popular clustering algorithms in data mining. Recently a lot of research has been concentrated on the algorithm when the dataset is divided into multiple parties or when the dataset is too large to be handled by the data owner. In the latter case, usually some servers are hired to perform the task of clustering. The dataset is divided by the data owner among the servers who together perform the k-means and return the cluster labels to the owner. The major challenge in this method is to prevent the servers from gaining substantial information about the actual data of the owner. Several algorithms have been designed in the past that provide cryptographic solutions to perform privacy preserving k-means. We provide a new method to perform k-means over a large set using multiple servers. Our technique avoids heavy cryptographic computations and instead we use a simple randomization technique to preserve the privacy of the data. The k-means computed has exactly the same efficiency and accuracy as the k-means computed over the original dataset without any randomization. We argue that our algorithm is secure against honest but curious and passive adversary.Comment: 19 pages, 4 tables. International Conference on Information Systems Security. Springer, Cham, 201

    Relating Statistical Image Differences and Degradation Features

    Get PDF
    Document images are degraded through bilevel processes such as scanning, printing, and photocopying. The resulting image degradations can be categorized based either on observable degradation features or on degradation model parameters. The degradation features can be related mathematically to model parameters. In this paper we statistically compare pairs of populations of degraded character images created with different model parameters. The changes in the probability that the characters are from different populations when the model parameters vary correlate with the relationship between observable degradation features and the model parameters. The paper also shows which features have the largest impact on the image

    Probing Nonlocal Spatial Correlations in Quantum Gases with Ultra-long-range Rydberg Molecules

    Full text link
    We present photo-excitation of ultra-long-range Rydberg molecules as a probe of spatial correlations in quantum gases. Rydberg molecules can be created with well-defined internuclear spacing, set by the radius of the outer lobe of the Rydberg electron wavefunction RnR_n. By varying the principal quantum number nn of the target Rydberg state, the molecular excitation rate can be used to map the pair-correlation function of the trapped gas g(2)(Rn)g^{(2)}(R_n). We demonstrate this with ultracold Sr gases and probe pair-separation length scales ranging from Rn=1400−3200R_n = 1400 - 3200 a0a_0, which are on the order of the thermal de Broglie wavelength for temperatures around 1 μ\muK. We observe bunching for a single-component Bose gas of 84^{84}Sr and anti-bunching due to Pauli exclusion at short distances for a polarized Fermi gas of 87^{87}Sr, revealing the effects of quantum statistics.Comment: 6 pages, 5 figure

    Measuring nonlocal three-body spatial correlations with Rydberg trimers in ultracold quantum gases

    Full text link
    We measure nonlocal third-order spatial correlations in non-degenerate ultracold gases of bosonic (84^{84}Sr) and spin-polarized fermionic (87^{87}Sr) strontium through studies of the formation rates for ultralong-range trimer Rydberg molecules. The trimer production rate is observed to be very sensitive to the effects of quantum statistics with a strong enhancement of up to a factor of six (3!) in the case of bosonic 84^{84}Sr due to bunching, and a marked reduction for spin-polarized fermionic 87^{87}Sr due to anti-bunching. The experimental results are compared to theoretical predictions and good agreement is observed. The present approach opens the way to {\it{in situ}} studies of higher-order nonlocal spatial correlations in a wide array of ultracold atomic-gas systems.Comment: 7 pages, 5 figure
    • …
    corecore