2,083 research outputs found

    Randomly Charged Polymers, Random Walks, and Their Extremal Properties

    Full text link
    Motivated by an investigation of ground state properties of randomly charged polymers, we discuss the size distribution of the largest Q-segments (segments with total charge Q) in such N-mers. Upon mapping the charge sequence to one--dimensional random walks (RWs), this corresponds to finding the probability for the largest segment with total displacement Q in an N-step RW to have length L. Using analytical, exact enumeration, and Monte Carlo methods, we reveal the complex structure of the probability distribution in the large N limit. In particular, the size of the longest neutral segment has a distribution with a square-root singularity at l=L/N=1, an essential singularity at l=0, and a discontinuous derivative at l=1/2. The behavior near l=1 is related to a another interesting RW problem which we call the "staircase problem". We also discuss the generalized problem for d-dimensional RWs.Comment: 33 pages, 19 Postscript figures, RevTe

    A Model Ground State of Polyampholytes

    Full text link
    The ground state of randomly charged polyampholytes is conjectured to have a structure similar to a necklace, made of weakly charged parts of the chain, compacting into globules, connected by highly charged stretched `strings'. We suggest a specific structure, within the necklace model, where all the neutral parts of the chain compact into globules: The longest neutral segment compacts into a globule; in the remaining part of the chain, the longest neutral segment (the 2nd longest neutral segment) compacts into a globule, then the 3rd, and so on. We investigate the size distributions of the longest neutral segments in random charge sequences, using analytical and Monte Carlo methods. We show that the length of the n-th longest neutral segment in a sequence of N monomers is proportional to N/(n^2), while the mean number of neutral segments increases as sqrt(N). The polyampholyte in the ground state within our model is found to have an average linear size proportional to sqrt(N), and an average surface area proportional to N^(2/3).Comment: 8 two-column pages. 5 eps figures. RevTex. Submitted to Phys. Rev.

    Theta-point universality of polyampholytes with screened interactions

    Full text link
    By an efficient algorithm we evaluate exactly the disorder-averaged statistics of globally neutral self-avoiding chains with quenched random charge qi=±1q_i=\pm 1 in monomer i and nearest neighbor interactions qiqj\propto q_i q_j on square (22 monomers) and cubic (16 monomers) lattices. At the theta transition in 2D, radius of gyration, entropic and crossover exponents are well compatible with the universality class of the corresponding transition of homopolymers. Further strong indication of such class comes from direct comparison with the corresponding annealed problem. In 3D classical exponents are recovered. The percentage of charge sequences leading to folding in a unique ground state approaches zero exponentially with the chain length.Comment: 15 REVTEX pages. 4 eps-figures . 1 tabl

    From Collapse to Freezing in Random Heteropolymers

    Full text link
    We consider a two-letter self-avoiding (square) lattice heteropolymer model of N_H (out ofN) attracting sites. At zero temperature, permanent links are formed leading to collapse structures for any fraction rho_H=N_H/N. The average chain size scales as R = N^{1/d}F(rho_H) (d is space dimension). As rho_H --> 0, F(rho_H) ~ rho_H^z with z={1/d-nu}=-1/4 for d=2. Moreover, for 0 < rho_H < 1, entropy approaches zero as N --> infty (being finite for a homopolymer). An abrupt decrease in entropy occurs at the phase boundary between the swollen (R ~ N^nu) and collapsed region. Scaling arguments predict different regimes depending on the ensemble of crosslinks. Some implications to the protein folding problem are discussed.Comment: 4 pages, Revtex, figs upon request. New interpretation and emphasis. Submitted to Europhys.Let

    Folding of the Triangular Lattice with Quenched Random Bending Rigidity

    Full text link
    We study the problem of folding of the regular triangular lattice in the presence of a quenched random bending rigidity + or - K and a magnetic field h (conjugate to the local normal vectors to the triangles). The randomness in the bending energy can be understood as arising from a prior marking of the lattice with quenched creases on which folds are favored. We consider three types of quenched randomness: (1) a ``physical'' randomness where the creases arise from some prior random folding; (2) a Mattis-like randomness where creases are domain walls of some quenched spin system; (3) an Edwards-Anderson-like randomness where the bending energy is + or - K at random independently on each bond. The corresponding (K,h) phase diagrams are determined in the hexagon approximation of the cluster variation method. Depending on the type of randomness, the system shows essentially different behaviors.Comment: uses harvmac (l), epsf, 17 figs included, uuencoded, tar compresse

    THERMODYNAMICS OF A BROWNIAN BRIDGE POLYMER MODEL IN A RANDOM ENVIRONMENT

    Full text link
    We consider a directed random walk making either 0 or +1+1 moves and a Brownian bridge, independent of the walk, conditioned to arrive at point bb on time TT. The Hamiltonian is defined as the sum of the square of increments of the bridge between the moments of jump of the random walk and interpreted as an energy function over the bridge connfiguration; the random walk acts as the random environment. This model provides a continuum version of a model with some relevance to protein conformation. The thermodynamic limit of the specific free energy is shown to exist and to be self-averaging, i.e. it is equal to a trivial --- explicitly computed --- random variable. An estimate of the asymptotic behaviour of the ground state energy is also obtained.Comment: 20 pages, uuencoded postscrip

    Self-consistent variational theory for globules

    Full text link
    A self-consistent variational theory for globules based on the uniform expansion method is presented. This method, first introduced by Edwards and Singh to estimate the size of a self-avoiding chain, is restricted to a good solvent regime, where two-body repulsion leads to chain swelling. We extend the variational method to a poor solvent regime where the balance between the two-body attractive and the three-body repulsive interactions leads to contraction of the chain to form a globule. By employing the Ginzburg criterion, we recover the correct scaling for the θ\theta-temperature. The introduction of the three-body interaction term in the variational scheme recovers the correct scaling for the two important length scales in the globule - its overall size RR, and the thermal blob size ξT\xi_{T}. Since these two length scales follow very different statistics - Gaussian on length scales ξT\xi_{T}, and space filling on length scale RR - our approach extends the validity of the uniform expansion method to non-uniform contraction rendering it applicable to polymeric systems with attractive interactions. We present one such application by studying the Rayleigh instability of polyelectrolyte globules in poor solvents. At a critical fraction of charged monomers, fcf_c, along the chain backbone, we observe a clear indication of a first-order transition from a globular state at small ff, to a stretched state at large ff; in the intermediate regime the bistable equilibrium between these two states shows the existence of a pearl-necklace structure.Comment: 7 pages, 1 figur
    corecore