180 research outputs found

    Magnon-polarons in cubic collinear Antiferromagnets

    Full text link
    We present a theoretical study of excitations formed by hybridization between magnons and phonons - magnon-polarons - in antiferromagnets. We first outline a general approach to determining which magnon and phonon modes can and cannot hybridize in a system thereby addressing the qualitative questions concerning magnon-polaron formation. As a specific and experimentally relevant case, we study Nickel Oxide quantitatively and find perfect agreement with the qualitative analysis, thereby highlighting the strength of the former. We find that there are two distinct features of antiferromagnetic magnon-polarons which differ from the ferromagnetic ones. First, hybridization between magnons and the longitudinal phonon modes is expected in many cubic antiferromagnetic structures. Second, we find that the very existence of certain hybridizations can be controlled via an external magnetic field, an effect which comes in addition to the ability to move the magnon modes relative to the phonons modes.Comment: arXiv admin note: text overlap with arXiv:1808.0901

    An all-electrical torque differential magnetometer operating under ambient conditions

    Full text link
    An all-electrical torque differential magnetometry (also known as cantilever magnetometry) setup employing piezoelectric quartz tuning forks is demonstrated. The magnetometer can be operated under ambient conditions as well as low temperatures and pressures. It extends the allowed specimen mass range up to several 10 μ\mug without any significant reduction in the sensitivity. Operation under ambient conditions and a simple all-electrical design of the magnetometer should allow for an easy integration with other experimental setups. The uniaxial magnetic anisotropy of a 25 μ\mum diameter iron wire, measured under ambient conditions with a high signal to noise ratio, was found to be in good agreement with its literature value. Further applications of the technique are discussed.Comment: 9 two-column pages, 9 figure

    Exchange-enhanced Ultrastrong Magnon-Magnon Coupling in a Compensated Ferrimagnet

    Full text link
    The ultrastrong coupling of (quasi-)particles has gained considerable attention due to its application potential and richness of the underlying physics. Coupling phenomena arising due to electromagnetic interactions are well explored. In magnetically ordered systems, the quantum-mechanical exchange-interaction should furthermore enable a fundamentally different coupling mechanism. Here, we report the observation of ultrastrong intralayer exchange-enhanced magnon-magnon coupling in a compensated ferrimagnet. We experimentally study the spin dynamics in a gadolinium iron garnet single crystal using broadband ferromagnetic resonance. Close to the ferrimagnetic compensation temperature, we observe ultrastrong coupling of clockwise and anticlockwise magnon modes. The magnon-magnon coupling strength reaches more than 30% of the mode frequency and can be tuned by varying the direction of the external magnetic field. We theoretically explain the observed phenomenon in terms of an exchange-enhanced mode-coupling mediated by a weak cubic anisotropy

    Electrical detectability of magnon-mediated spin current shot noise

    Full text link
    A magnonic spin current crossing a ferromagnet-metal interface is accompanied by spin current shot noise arising from the discrete quanta of spin carried by magnons. In thin films, e.g., the spin of so-called squeezed magnons have been shown to deviate from the common value \hbar, with corresponding changes in the spin noise. In experiments, spin currents are typically converted to charge currents via the inverse spin Hall effect. We here analyze the magnitude of the spin current shot noise in the charge channel for a typical electrically detected spin pumping experiment, and find that the voltage noise originating from the spin current shot noise is much smaller than the inevitable Johnson-Nyquist noise. Furthermore, we find that due to the local nature of the spin-charge conversion, the ratio of spin current shot noise and Johnson-Nyquist noise cannot be systematically enhanced by tuning the sample geometry, in contrast to the linear increase in dc spin pumping voltage with sample length. Instead, the ratio depends sensitively on material-specific transport properties. Our analysis thus provides guidance for the experimental detection of squeezed magnons through spin pumping shot noise.Comment: Revised manuscript title, added paragraph of interpretation of the shot noise enhancement with temperature, added brief discussion of the low temperature limit, references adde

    Control of nonlocal magnon spin transport via magnon drift currents

    Full text link
    Spin transport via magnon diffusion in magnetic insulators is important for a broad range of spin-based phenomena and devices. However, the absence of the magnon equivalent of an electric force is a bottleneck. In this work, we demonstrate the controlled generation of magnon drift currents in yttrium iron garnet/platinum heterostructures. By performing electrical injection and detection of incoherent magnons, we find magnon drift currents that stem from the interfacial Dzyaloshinskii-Moriya interaction. We can further control the magnon drift by the orientation of the magnetic field. The drift current changes the magnon propagation length by up to ±\pm 6 % relative to diffusion. We generalize the magnonic spin transport theory to include a finite drift velocity resulting from any inversion asymmetric interaction, and obtain results consistent with our experiments.Comment: 6 pages, 3 figure

    Why do Particle Clouds Generate Electric Charges?

    Full text link
    Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, because it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. Here, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains in the presence of an electric field, and we confirm the model's predictions using discrete-element simulations and a tabletop granular experiment
    corecore