6,768 research outputs found
Orientation-dependent ionization yields from strong-field ionization of fixed-in-space linear and asymmetric top molecules
The yield of strong-field ionization, by a linearly polarized probe pulse, is
studied experimentally and theoretically, as a function of the relative
orientation between the laser field and the molecule. Experimentally, carbonyl
sulfide, benzonitrile and naphthalene molecules are aligned in one or three
dimensions before being singly ionized by a 30 fs laser pulse centered at 800
nm. Theoretically, we address the behaviour of these three molecules. We
consider the degree of alignment and orientation and model the angular
dependence of the total ionization yield by molecular tunneling theory
accounting for the Stark shift of the energy level of the ionizing orbital. For
naphthalene and benzonitrile the orientational dependence of the ionization
yield agrees well with the calculated results, in particular the observation
that ionization is maximized when the probe laser is polarized along the most
polarizable axis. For OCS the observation of maximum ionization yield when the
probe is perpendicular to the internuclear axis contrasts the theoretical
results.Comment: 14 pages, 4 figure
Noise Thermometry with Two Weakly Coupled Bose-Einstein Condensates
Here we report on the experimental investigation of thermally induced
fluctuations of the relative phase between two Bose-Einstein condensates which
are coupled via tunneling. The experimental control over the coupling strength
and the temperature of the thermal background allows for the quantitative
analysis of the phase fluctuations. Furthermore, we demonstrate the application
of these measurements for thermometry in a regime where standard methods fail.
With this we confirm that the heat capacity of an ideal Bose gas deviates from
that of a classical gas as predicted by the third law of thermodynamics.Comment: 4 pages, 4 figure
Tunneling through nanosystems: Combining broadening with many-particle states
We suggest a new approach for transport through finite systems based on the
Liouville equation. By working in a basis of many-particle states for the
finite system, Coulomb interactions are taken fully into account and correlated
transitions by up to two different contact states are included. This latter
extends standard rate equation models by including level-broadening effects.
The main result of the paper is a general expression for the elements of the
density matrix of the finite size system, which can be applied whenever the
eigenstates and the couplings to the leads are known. The approach works for
arbitrary bias and for temperatures above the Kondo temperature. We apply the
approach to standard models and good agreement with other methods in their
respective regime of validity is found.Comment: 9 pages, 5 figures included to tex
Primary beam effects of radio astronomy antennas -- II. Modelling the MeerKAT L-band beam
After a decade of design and construction, South Africa's SKA-MID precursor
MeerKAT has begun its science operations. To make full use of the widefield
capability of the array, it is imperative that we have an accurate model of the
primary beam of its antennas. We have taken available L-band full-polarization
'astro-holographic' observations of three antennas and a generic
electromagnetic simulation and created sparse representations of the beams
using principal components and Zernike polynomials. The spectral behaviour of
the spatial coefficients has been modelled using discrete cosine transform. We
have provided the Zernike-based model over a diameter of 10 deg averaged over
the beams of three antennas in an associated software tool (EIDOS) that can be
useful in direction-dependent calibration and imaging. The model is more
accurate for the diagonal elements of the beam Jones matrix and at lower
frequencies. As we get more accurate beam measurements and simulations in the
future, especially for the cross-polarization patterns, our pipeline can be
used to create more accurate sparse representations of MeerKAT beams.Comment: 16 pages, 18 figures. This is a pre-copyedited, author-produced PDF
of an article accepted for publication in MNRAS following peer review. The
version of record [K. M. B. Asad et al., 2021] is available online at:
https://doi.org/10.1093/mnras/stab10
The evolution of precipitate crystal structures in an Al-Mg-Si(-Cu) alloy studied by a combined HAADF-STEM and SPED approach
This work presents a detailed investigation into the effect of a low Cu
addition (0.01 at.%) on precipitation in an Al-0.80Mg-0.85Si alloy during
ageing. The precipitate crystal structures were assessed by scanning
transmission electron microscopy combined with a novel scanning precession
electron diffraction approach, which includes machine learning. The combination
of techniques enabled evaluation of the atomic arrangement within individual
precipitates, as well as an improved estimate of precipitate phase fractions at
each ageing condition, through analysis of a statistically significant number
of precipitates. Based on the obtained results, the total amount of solute
atoms locked inside precipitates could be approximated. It was shown that even
with a Cu content close to impurity levels, the Al-Mg-Si system precipitation
was significantly affected with overageing. The principal change was due to a
gradually increasing phase fraction of the Cu-containing Q'-phase, which
eventually was seen to dominate the precipitate structures. The structural
overtake could be explained based on a continuous formation of the thermally
stable Q'-phase, with Cu atomic columns incorporating less Cu than what could
potentially be accommodated.Comment: 13 pages, 10 figures, 2 table
Scattering theory for Klein-Gordon equations with non-positive energy
We study the scattering theory for charged Klein-Gordon equations:
\{{array}{l} (\p_{t}- \i v(x))^{2}\phi(t,x) \epsilon^{2}(x,
D_{x})\phi(t,x)=0,[2mm] \phi(0, x)= f_{0}, [2mm] \i^{-1} \p_{t}\phi(0, x)=
f_{1}, {array}. where: \epsilon^{2}(x, D_{x})= \sum_{1\leq j, k\leq
n}(\p_{x_{j}} \i b_{j}(x))A^{jk}(x)(\p_{x_{k}} \i b_{k}(x))+ m^{2}(x),
describing a Klein-Gordon field minimally coupled to an external
electromagnetic field described by the electric potential and magnetic
potential . The flow of the Klein-Gordon equation preserves the
energy: h[f, f]:= \int_{\rr^{n}}\bar{f}_{1}(x) f_{1}(x)+
\bar{f}_{0}(x)\epsilon^{2}(x, D_{x})f_{0}(x) - \bar{f}_{0}(x) v^{2}(x) f_{0}(x)
\d x. We consider the situation when the energy is not positive. In this
case the flow cannot be written as a unitary group on a Hilbert space, and the
Klein-Gordon equation may have complex eigenfrequencies. Using the theory of
definitizable operators on Krein spaces and time-dependent methods, we prove
the existence and completeness of wave operators, both in the short- and
long-range cases. The range of the wave operators are characterized in terms of
the spectral theory of the generator, as in the usual Hilbert space case
Plasma vascular endothelial but not fibroblast growth factor levels correlate with colorectal liver metastasis vascularity and volume
The extent to which plasma levels of angiogenic factors in healthy individuals and tumour volume-related variations in colorectal cancer affect the accuracy of circulating angiogenic factors as predictors of colorectal cancer vascularity is unknown. We used enzyme-linked immunosorbant assay to measure plasma vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) levels in colorectal liver metastasis (CLM) patients, and ‘no cancer’ controls. CLM volume was determined from computerized tomography scans, and tumour vessel count and vessel volume from anti-endothelial antibody-stained biopsies. There was a significant (P = 0.03) increase in plasma VEGF level in 29 CLM patients (median 180.3 pg ml−1, iqr 132.5–284.8 pg ml−1) compared with 19 controls (median 125.8 pg ml−1, iqr 58.2–235.9 pg ml−1). There were significant correlations between plasma VEGF and tumour vessel count (r = 0.66, P = 0.03), tumour vessel volume (r = 0.59, P = 0.03), and CLM volume (r = 0.53, P = 0.03). A VEGF level in the upper quartile of the plasma VEGF distribution had a 70% sensitivity and 75% specificity in predicting an upper quartile liver metastasis tumour vessel count. No relation was identified between CLM and plasma bFGF levels. Plasma VEGF level predicted CLM vascularity, despite an overlap with normal levels and tumour volume-related variations. © 2000 Cancer Research Campaig
Disrupted working memory circuitry and psychotic symptoms in 22q11.2 deletion syndrome
22q11.2 deletion syndrome (22q11DS) is a recurrent genetic mutation that is highly penetrant for psychosis. Behavioral research suggests that 22q11DS patients exhibit a characteristic neurocognitive phenotype that includes differential impairment in spatial working memory (WM). Notably, spatial WM has also been proposed as an endophenotype for idiopathic psychotic disorder, yet little is known about the neurobiological substrates of WM in 22q11DS. In order to investigate the neural systems engaged during spatial WM in 22q11DS patients, we collected functional magnetic resonance imaging (fMRI) data while 41 participants (16 22q11DS patients, 25 demographically matched controls) performed a spatial capacity WM task that included manipulations of delay length and load level. Relative to controls, 22q11DS patients showed reduced neural activation during task performance in the intraparietal sulcus (IPS) and superior frontal sulcus (SFS). In addition, the typical increases in neural activity within spatial WM-relevant regions with greater memory load were not observed in 22q11DS. We further investigated whether neural dysfunction during WM was associated with behavioral WM performance, assessed via the University of Maryland letter-number sequencing (LNS) task, and positive psychotic symptoms, assessed via the Structured Interview for Prodromal Syndromes (SIPS), in 22q11DS patients. WM load activity within IPS and SFS was positively correlated with LNS task performance; moreover, WM load activity within IPS was inversely correlated with the severity of unusual thought content and delusional ideas, indicating that decreased recruitment of working memory-associated neural circuitry is associated with more severe positive symptoms. These results suggest that 22q11DS patients show reduced neural recruitment of brain regions critical for spatial WM function, which may be related to characteristic behavioral manifestations of the disorder
First-order supersymmetric sigma models and target space geometry
We study the conditions under which N=(1,1) generalized sigma models support
an extension to N=(2,2). The enhanced supersymmetry is related to the target
space complex geometry. Concentrating on a simple situation, related to Poisson
sigma models, we develop a language that may help us analyze more complicated
models in the future. In particular, we uncover a geometrical framework which
contains generalized complex geometry as a special case.Comment: 1+19 pages, JHEP style, published versio
- …