6,768 research outputs found

    Orientation-dependent ionization yields from strong-field ionization of fixed-in-space linear and asymmetric top molecules

    Full text link
    The yield of strong-field ionization, by a linearly polarized probe pulse, is studied experimentally and theoretically, as a function of the relative orientation between the laser field and the molecule. Experimentally, carbonyl sulfide, benzonitrile and naphthalene molecules are aligned in one or three dimensions before being singly ionized by a 30 fs laser pulse centered at 800 nm. Theoretically, we address the behaviour of these three molecules. We consider the degree of alignment and orientation and model the angular dependence of the total ionization yield by molecular tunneling theory accounting for the Stark shift of the energy level of the ionizing orbital. For naphthalene and benzonitrile the orientational dependence of the ionization yield agrees well with the calculated results, in particular the observation that ionization is maximized when the probe laser is polarized along the most polarizable axis. For OCS the observation of maximum ionization yield when the probe is perpendicular to the internuclear axis contrasts the theoretical results.Comment: 14 pages, 4 figure

    Noise Thermometry with Two Weakly Coupled Bose-Einstein Condensates

    Full text link
    Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics.Comment: 4 pages, 4 figure

    Tunneling through nanosystems: Combining broadening with many-particle states

    Full text link
    We suggest a new approach for transport through finite systems based on the Liouville equation. By working in a basis of many-particle states for the finite system, Coulomb interactions are taken fully into account and correlated transitions by up to two different contact states are included. This latter extends standard rate equation models by including level-broadening effects. The main result of the paper is a general expression for the elements of the density matrix of the finite size system, which can be applied whenever the eigenstates and the couplings to the leads are known. The approach works for arbitrary bias and for temperatures above the Kondo temperature. We apply the approach to standard models and good agreement with other methods in their respective regime of validity is found.Comment: 9 pages, 5 figures included to tex

    Primary beam effects of radio astronomy antennas -- II. Modelling the MeerKAT L-band beam

    Get PDF
    After a decade of design and construction, South Africa's SKA-MID precursor MeerKAT has begun its science operations. To make full use of the widefield capability of the array, it is imperative that we have an accurate model of the primary beam of its antennas. We have taken available L-band full-polarization 'astro-holographic' observations of three antennas and a generic electromagnetic simulation and created sparse representations of the beams using principal components and Zernike polynomials. The spectral behaviour of the spatial coefficients has been modelled using discrete cosine transform. We have provided the Zernike-based model over a diameter of 10 deg averaged over the beams of three antennas in an associated software tool (EIDOS) that can be useful in direction-dependent calibration and imaging. The model is more accurate for the diagonal elements of the beam Jones matrix and at lower frequencies. As we get more accurate beam measurements and simulations in the future, especially for the cross-polarization patterns, our pipeline can be used to create more accurate sparse representations of MeerKAT beams.Comment: 16 pages, 18 figures. This is a pre-copyedited, author-produced PDF of an article accepted for publication in MNRAS following peer review. The version of record [K. M. B. Asad et al., 2021] is available online at: https://doi.org/10.1093/mnras/stab10

    The evolution of precipitate crystal structures in an Al-Mg-Si(-Cu) alloy studied by a combined HAADF-STEM and SPED approach

    Get PDF
    This work presents a detailed investigation into the effect of a low Cu addition (0.01 at.%) on precipitation in an Al-0.80Mg-0.85Si alloy during ageing. The precipitate crystal structures were assessed by scanning transmission electron microscopy combined with a novel scanning precession electron diffraction approach, which includes machine learning. The combination of techniques enabled evaluation of the atomic arrangement within individual precipitates, as well as an improved estimate of precipitate phase fractions at each ageing condition, through analysis of a statistically significant number of precipitates. Based on the obtained results, the total amount of solute atoms locked inside precipitates could be approximated. It was shown that even with a Cu content close to impurity levels, the Al-Mg-Si system precipitation was significantly affected with overageing. The principal change was due to a gradually increasing phase fraction of the Cu-containing Q'-phase, which eventually was seen to dominate the precipitate structures. The structural overtake could be explained based on a continuous formation of the thermally stable Q'-phase, with Cu atomic columns incorporating less Cu than what could potentially be accommodated.Comment: 13 pages, 10 figures, 2 table

    Scattering theory for Klein-Gordon equations with non-positive energy

    Full text link
    We study the scattering theory for charged Klein-Gordon equations: \{{array}{l} (\p_{t}- \i v(x))^{2}\phi(t,x) \epsilon^{2}(x, D_{x})\phi(t,x)=0,[2mm] \phi(0, x)= f_{0}, [2mm] \i^{-1} \p_{t}\phi(0, x)= f_{1}, {array}. where: \epsilon^{2}(x, D_{x})= \sum_{1\leq j, k\leq n}(\p_{x_{j}} \i b_{j}(x))A^{jk}(x)(\p_{x_{k}} \i b_{k}(x))+ m^{2}(x), describing a Klein-Gordon field minimally coupled to an external electromagnetic field described by the electric potential v(x)v(x) and magnetic potential b⃗(x)\vec{b}(x). The flow of the Klein-Gordon equation preserves the energy: h[f, f]:= \int_{\rr^{n}}\bar{f}_{1}(x) f_{1}(x)+ \bar{f}_{0}(x)\epsilon^{2}(x, D_{x})f_{0}(x) - \bar{f}_{0}(x) v^{2}(x) f_{0}(x) \d x. We consider the situation when the energy is not positive. In this case the flow cannot be written as a unitary group on a Hilbert space, and the Klein-Gordon equation may have complex eigenfrequencies. Using the theory of definitizable operators on Krein spaces and time-dependent methods, we prove the existence and completeness of wave operators, both in the short- and long-range cases. The range of the wave operators are characterized in terms of the spectral theory of the generator, as in the usual Hilbert space case

    Plasma vascular endothelial but not fibroblast growth factor levels correlate with colorectal liver metastasis vascularity and volume

    Get PDF
    The extent to which plasma levels of angiogenic factors in healthy individuals and tumour volume-related variations in colorectal cancer affect the accuracy of circulating angiogenic factors as predictors of colorectal cancer vascularity is unknown. We used enzyme-linked immunosorbant assay to measure plasma vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) levels in colorectal liver metastasis (CLM) patients, and ‘no cancer’ controls. CLM volume was determined from computerized tomography scans, and tumour vessel count and vessel volume from anti-endothelial antibody-stained biopsies. There was a significant (P = 0.03) increase in plasma VEGF level in 29 CLM patients (median 180.3 pg ml−1, iqr 132.5–284.8 pg ml−1) compared with 19 controls (median 125.8 pg ml−1, iqr 58.2–235.9 pg ml−1). There were significant correlations between plasma VEGF and tumour vessel count (r = 0.66, P = 0.03), tumour vessel volume (r = 0.59, P = 0.03), and CLM volume (r = 0.53, P = 0.03). A VEGF level in the upper quartile of the plasma VEGF distribution had a 70% sensitivity and 75% specificity in predicting an upper quartile liver metastasis tumour vessel count. No relation was identified between CLM and plasma bFGF levels. Plasma VEGF level predicted CLM vascularity, despite an overlap with normal levels and tumour volume-related variations. © 2000 Cancer Research Campaig

    Disrupted working memory circuitry and psychotic symptoms in 22q11.2 deletion syndrome

    Get PDF
    22q11.2 deletion syndrome (22q11DS) is a recurrent genetic mutation that is highly penetrant for psychosis. Behavioral research suggests that 22q11DS patients exhibit a characteristic neurocognitive phenotype that includes differential impairment in spatial working memory (WM). Notably, spatial WM has also been proposed as an endophenotype for idiopathic psychotic disorder, yet little is known about the neurobiological substrates of WM in 22q11DS. In order to investigate the neural systems engaged during spatial WM in 22q11DS patients, we collected functional magnetic resonance imaging (fMRI) data while 41 participants (16 22q11DS patients, 25 demographically matched controls) performed a spatial capacity WM task that included manipulations of delay length and load level. Relative to controls, 22q11DS patients showed reduced neural activation during task performance in the intraparietal sulcus (IPS) and superior frontal sulcus (SFS). In addition, the typical increases in neural activity within spatial WM-relevant regions with greater memory load were not observed in 22q11DS. We further investigated whether neural dysfunction during WM was associated with behavioral WM performance, assessed via the University of Maryland letter-number sequencing (LNS) task, and positive psychotic symptoms, assessed via the Structured Interview for Prodromal Syndromes (SIPS), in 22q11DS patients. WM load activity within IPS and SFS was positively correlated with LNS task performance; moreover, WM load activity within IPS was inversely correlated with the severity of unusual thought content and delusional ideas, indicating that decreased recruitment of working memory-associated neural circuitry is associated with more severe positive symptoms. These results suggest that 22q11DS patients show reduced neural recruitment of brain regions critical for spatial WM function, which may be related to characteristic behavioral manifestations of the disorder

    First-order supersymmetric sigma models and target space geometry

    Full text link
    We study the conditions under which N=(1,1) generalized sigma models support an extension to N=(2,2). The enhanced supersymmetry is related to the target space complex geometry. Concentrating on a simple situation, related to Poisson sigma models, we develop a language that may help us analyze more complicated models in the future. In particular, we uncover a geometrical framework which contains generalized complex geometry as a special case.Comment: 1+19 pages, JHEP style, published versio
    • …
    corecore