20 research outputs found

    Acetylation of the Pro-Apoptotic Factor, p53 in the Hippocampus following Cerebral Ischemia and Modulation by Estrogen

    Get PDF
    Recent studies demonstrate that acetylation of the transcription factor, p53 on lysine(373) leads to its enhanced stabilization/activity and increased susceptibility of cells to stress. However, it is not known whether acetylation of p53 is altered in the hippocampus following global cerebral ischemia (GCI) or is regulated by the hormone, 17ÎČ-estradiol (17ÎČ-E(2)), and thus, this study examined these issues.The study revealed that Acetyl p53-Lysine(373) levels were markedly increased in the hippocampal CA1 region after GCI at 3 h, 6 h and 24 h after reperfusion, an effect strongly attenuated by 17ÎČ-E(2). 17ÎČ-E(2) also enhanced interaction of p53 with the ubiquitin ligase, Mdm2, increased ubiquitination of p53, and induced its down-regulation, as well as attenuated elevation of the p53 transcriptional target, Puma. We also observed enhanced acetylation of p53 at a different lysine (Lys(382)) at 3 h after reperfusion, and 17ÎČ-E(2) also markedly attenuated this effect. Furthermore, administration of an inhibitor of CBP/p300 acetyltransferase, which acetylates p53, was strongly neuroprotective of the CA1 region following GCI. In long-term estrogen deprived (LTED) animals, the ability of 17ÎČ-E(2) to attenuate p53 acetylation was lost, and intriguingly, Acetyl p53-Lysine(373) levels were markedly elevated in sham (non-ischemic) LTED animals. Finally, intracerebroventricular injections of Gp91ds-Tat, a specific NADPH oxidase (NOX2) inhibitor, but not the scrambled tat peptide control (Sc-Tat), attenuated acetylation of p53 and reduced levels of Puma following GCI.The studies demonstrate that p53 undergoes enhanced acetylation in the hippocampal CA1 region following global cerebral ischemia, and that the neuroprotective agent, 17ÎČ-E(2), markedly attenuates the ischemia-induced p53 acetylation. Furthermore, following LTED, the suppressive effect of 17ÎČ-E(2) on p53 acetylation is lost, and p53 acetylation increases in the hippocampus, which may explain previous reports of increased sensitivity of the hippocampus to ischemic stress following LTED

    Mechanisms involved in the increased sensitivity of the rabbit basilar artery to atrial natriuretic peptide in diabetes

    No full text
    Atrial natriuretic peptide (ANP) is a vasodilator with significant regional differences and controversial effects in the cerebral circulation, a vascular bed particularly prone to diabetes-induced complications. The present study has investigated how alloxan-induced diabetes modifies the mechanisms involved in the response of the rabbit basilar artery to ANP. ANP (10-12-10−7 M) relaxed precontracted basilar arteries, with higher potency in diabetic than in control rabbits. In arteries from both groups of animals, endothelium removal reduced ANP-induced relaxations. Inhibition of NO-synthesis attenuated ANP-induced relaxation but this attenuation was lower in diabetic than in control rabbits. In control rabbits, indomethacin displaced to the left the concentrationresponse curve to ANP, without significantly modifying the Emax value. In diabetic rabbits, indomethacin significantly enhanced arterial relaxations to ANP. In KCl-depolarised arteries, relaxation to ANP was almost abolished both in control and in diabetic rabbits. Iberiotoxin inhibited relaxations to ANP in both groups of rabbits. Glibenclamide and 4-aminopyridine inhibited the ANP-induced relaxations more in diabetic than in control rabbits. Basilar arteries from diabetic rabbits showed decreased natriuretic peptide receptor C expression and no changes in natriuretic peptide receptor A, large conductance calcium-activated K+ channels (BKCa), ATPsensitive K+ channels (KATP) and voltage-sensitive K+ channels (KV) expression. These results suggest that diabetes enhances the sensitivity of the rabbit basilar artery to ANP by mechanisms that at least include reduced expression of natriuretic peptide receptor C, and enhanced activity of KATP and KV channels. Furthermore, diabetes reduces endothelial NO and prostacyclin which mediate arterial relaxation to ANP

    Molecular mechanisms underlying the neuroprotective role of atrial natriuretic peptide in experimental acute ischemic stroke.

    No full text
    Along with its role in regulating blood pressure and fluid homeostasis, the natriuretic peptide system could be also part of an endogenous protective mechanism against brain damage. We aimed to assess the possibility that exogenous atrial natriuretic peptide (ANP) could protect against acute ischemic stroke, as well as the molecular mechanisms involved. Three groups of rats subjected to transient middle cerebral artery occlusion (tMCAO, intraluminal filament technique, 60 min) received intracerebroventricular vehicle, low-dose ANP (0.5 nmol) or high-dose ANP (2.5 nmol), at 30 min reperfusion. Neurofunctional condition, and brain infarct and edema volumes were measured at 24 h after tMCAO. Apoptotic cell death and expression of natriuretic peptide receptors (NPR-A and NPR-C), K+ channels (KATP, KV and BKCa), and PI3K/Akt and MAPK/ERK1/2 signaling pathways were analyzed. Significant improvement in neurofunctional status, associated to reduction in infarct and edema volumes, was shown in the high-dose ANP group. As to the molecular mechanisms analyzed, high-dose ANP: 1) reduced caspase-3-mediated apoptosis; 2) did not modify the expression of NPR-A and NPR-C, which had been downregulated by the ischemic insult; 3) induced a significant reversion of ischemia-downregulated KATP channel expression; and 4) induced a significant reversion of ischemia-upregulated pERK2/ERK2 expression ratio. In conclusion, ANP exerts a significant protective role in terms of both improvement of neurofunctional status and reduction in infarct volume. Modulation of ANP on some molecular mechanisms involved in ischemiainduced apoptotic cell death (KATP channels and MAPK/ERK1/2 signaling pathway) could account, at least in part, for its beneficial effect. Therefore, ANP should be considered as a potential adjunctive neuroprotective agent improving stroke outcome after successful reperfusion interventions

    PSD-95 and PKC converge in regulating NMDA receptor trafficking and gating

    No full text
    Neuronal NMDA receptors (NMDARs) colocalize with postsynaptic density protein-95 (PSD-95), a putative NMDAR anchoring protein and core component of the PSD, at excitatory synapses. PKC activation and PSD-95 expression each enhance NMDAR channel opening rate and number of functional channels at the cell surface. Here we show in Xenopus oocytes that PSD-95 and PKC potentiate NMDA gating and trafficking in a nonadditive manner. PSD-95 and PKC each enhance NMDA channel activity, with no change in single-channel conductance, reversal potential or mean open time. PSD-95 and PKC each potentiate NMDA channel opening rate (k(ÎČ)) and number of functional channels at the cell surface (N), as indicated by more rapid current decay and enhanced charge transfer in the presence of the open channel blocker MK-801. PSD-95 and PKC each increase NMDAR surface expression, as indicated by immunofluorescence. PKC potentiates NMDA channel function and NMDAR surface expression to the same final absolute values in the absence or presence of PSD-95. Thus, PSD-95 partially occludes PKC potentiation. We further show that Ser-1462, a putative phosphorylation target within the PDZ-binding motif of the NR2A subunit, is required for PSD-95-induced potentiation and partial occlusion of PKC potentiation. Coimmunoprecipitation experiments with cortical neurons in culture indicate that PKC activation promotes assembly of NR2 with NR1, and that the newly assembled NMDARs are not associated with PSD-95. These findings predict that synaptic scaffolding proteins and protein kinases convergently modulate NMDAR gating and trafficking at synaptic sites

    Periodic 17ÎČ-Estradiol Pretreatment Protects Rat Brain from Cerebral Ischemic Damage via Estrogen Receptor-ÎČ

    Get PDF
    Although chronic 17ÎČ-estradiol (E(2)) has been shown to be a cognition-preserving and neuroprotective agent in animal brain injury models, concern regarding its safety was raised by the failed translation of this phenomenon to the clinic. Previously, we demonstrated that a single bolus of E(2) 48 hr prior to ischemia protected the hippocampus from damage in ovariectomized rats via phosphorylation of cyclic-AMP response element binding protein, which requires activation of estrogen receptor subtype beta (ER-ÎČ). The current study tests the hypothesis that long-term periodic E(2)-treatment improves cognition and reduces post-ischemic hippocampal injury by means of ER-ÎČ activation. Ovariectomized rats were given ten injections of E(2) at 48 hr intervals for 21 days. Hippocampal-dependent learning, memory and ischemic neuronal loss were monitored. Results demonstrated that periodic E(2) treatments improved spatial learning, memory and ischemic neuronal survival in ovariectomized rats. Additionally, periodic ER-ÎČ agonist treatments every 48 hr improved post-ischemic cognition. Silencing of hippocampal ER-ÎČ attenuated E(2)-mediated ischemic protection suggesting that ER-ÎČ plays a key role in mediating the beneficial effects of periodic E(2) treatments. This study emphasizes the need to investigate a periodic estrogen replacement regimen to reduce cognitive decline and cerebral ischemia incidents/impact in post-menopausal women
    corecore