17 research outputs found

    Diet during early life defines testicular lipid content and sperm quality in adulthood

    Get PDF
    Childhood obesity is a serious concern associated with ill health later in life. Emerging data suggest that obesity has long-term adverse effects upon male sexual and reproductive health but few studies addressed this issue. We hypothesized that exposure to high-fat diet during early life alters testicular lipid content and metabolism leading to permanent damage to sperm parameters. After weaning (day 21 after birth), 36 male mice were randomly divided into 3 groups and fed with different diet regimen for 200 days: CTRL-standard chow; HFD-high-fat diet (Carbohydrate: 35.7%, Protein: 20.5%, Fat: 36.0%); HFDt-high-fat diet for 60 days then replaced by standard chow. Biometric and metabolic data were monitored. Animals were then sacrificed, and tissues collected. Epididymal sperm parameters and endocrine parameters were evaluated. Testicular metabolites were extracted and characterized by 1H-NMR and GC-MS. Testicular mitochondrial and antioxidant activity were evaluated. Our results show that mice fed with high-fat diet, even if only until early adulthood, had lower sperm viability and motility, and higher incidence of head and tail defects. Although diet reversion with weight loss during adulthood prevents the progression of metabolic syndrome, testicular content in fatty acids is irreversibly affected. Excessive fat intake promoted an over-accumulation of pro-inflammatory n-6 polyunsaturated fatty acids in testis, which are strongly correlated with negative effects upon sperm quality. Therefore, the adoption of high-fat diets during early life correlates to irreversible changes in testicular lipid content and metabolism, which are related to permanent damage to sperm quality later in life

    Inherited Metabolic Memory of High-Fat Diet Impairs Testicular Fatty Acid Content and Sperm Parameters

    Get PDF
    Scope Exposure to a high-fat diet (HFD) from early-life is associated with a testicular metabolic signature link to abnormal sperm parameters up to two generations after exposure in mice. Hereby, this study describes a testicular lipid signature associate with "inherited metabolic memory" of exposure to HFD, persisting up to two generations in mice. Methods and Results Diet-challenged mice (n = 36) are randomly fed after weaning with standard chow (CTRL); HFD for 200 days or transient HFD (HFDt) (60 days of HFD + 140 days of standard chow). Subsequent generations (36 mice per generation) are fed with chow diet. Mice are euthanized 200 days post-weaning. Glucose homeostasis, serum hormones, testicular bioenergetics, and antioxidant enzyme activity are evaluated. Testicular lipid-related metabolites and fatty acids are characterized by H-1-NMR and GC-MS. Sons of HFD display impaired choline metabolism, mitochondrial activity, and antioxidant defenses, while grandsons show a shift in testicular omega 3/omega 6 ratio towards a pro-inflammatory environment. Grandsons of HFDt raise 3-hydroxybutyrate levels with possible implications to testicular insulin resistance. Sperm counts decrease in grandsons of HFD-exposed mice, regardless of the duration of exposure. Conclusion HFD-induced "inherited metabolic memory" alters testicular fatty acid metabolism with consequences to sperm parameters up to two generations

    A Novel and Expedient Approach to New Thiazoles, Thiazolo[3,2-a]pyridines, Dihydrothiophenes, and Hydrazones Incorporating Thieno[2,3-b]thiophene Moiety

    Get PDF
    This paper reports details about the synthesis of a series of novel functionalized symmetrical bis-heterocyclic compounds containing a thieno[2,3-b]thiophene motif. Bis-thiazole derivatives 2, 3a-c and thiazolo[3,2-a]pyridine derivatives 4a-c are achieved. The hitherto unknown dihydrothiophene derivatives 6a-d via bis-pyridimium salt 5 are obtained. Additionally, the novel hydrazonothieno[2,3-b]thiophene derivatives 10a-c are obtained via bis-tosylacetylthieno[2,3-b]thiophene derivative 9. All compounds are characterized by 1H-, 13C-NMR, GCMS, IR, and UV-vis spectrometry. These compounds represent a new class of sulfur and nitrogen containing heterocycles that should also be of interest as new materials

    Diet during early life defines testicular lipid content and sperm quality in adulthood

    Get PDF
    Childhood obesity is a serious concern associated with ill health later in life. Emerging data suggest that obesity has long-term adverse effects upon male sexual and reproductive health, but few studies have addressed this issue. We hypothesized that exposure to high-fat diet during early life alters testicular lipid content and metabolism, leading to permanent damage to sperm parameters. After weaning (day 21 after birth), 36 male mice were randomly divided into three groups and fed with a different diet regimen for 200 days: a standard chow diet (CTRL), a high-fat diet (HFD) (carbohydrate: 35.7%, protein: 20.5%, and fat: 36.0%), and a high-fat diet for 60 days, then replaced by standard chow (HFDt). Biometric and metabolic data were monitored. Animals were then euthanized, and tissues were collected. Epididymal sperm parameters and endocrine parameters were evaluated. Testicular metabolites were extracted and characterized by 1H-NMR and GC-MS. Testicular mitochondrial and antioxidant activity were evaluated. Our results show that mice fed with a high-fat diet, even if only until early adulthood, had lower sperm viability and motility, and higher incidence of head and tail defects. Although diet reversion with weight loss during adulthood prevents the progression of metabolic syndrome, testicular content in fatty acids is irreversibly affected. Excessive fat intake promoted an overaccumulation of proinflammatory n-6 polyunsaturated fatty acids in the testis, which is strongly correlated with negative effects upon sperm quality. Therefore, the adoption of high-fat diets during early life correlates with irreversible changes in testicular lipid content and metabolism, which are related to permanent damage to sperm quality later in life

    Plant Growth-Promoting Rhizobacteria in Bean Production

    No full text
    Attempts to produce food of plant origin without the use of fertilizers and pesticides are progressively becoming more numerous. It was also found that microorganisms have the ability to provide plants with necessary nutrients. Biofertilizers are expected to take an important place in agricultural production in the years to come. To produce quality biofertilizer, it is necessary to thoroughly study the microorganisms, their relationships, and relationships between organisms and crops for which the biofertilizer is intended. In the present study, we observed the effect of bean treatment with rhizobacteria on the soil microbial status and bean development and yield. A trial was established at Institute of Field and Vegetable Crops, Novi Sad. The inoculants came from the Faculty of Agriculture, Novi Sad. They had been developed from bean rhizosphere and tested in laboratory conditions prior to this study. Bean seeds were inoculated directly before sowing using 10 ml of inoculum per 100 g of seed. The following treatments were tested: 1. Rhizobium leguminosarum bv. phaseoli; 2. Azotobacter chroococcum; 3. Rhizobium leguminosarum bv. phaseoli + Azotobacter chroococcum + Streptomyces sp.; and 4. control (no inoculation). Plant material and rhizosphere soil were sampled at flowering and at full maturity. The rhizosphere soil was analyzed for total microbial abundance, the numbers of fungi, actinomycetes, aminoheterotrophs, azotobacter, and dehydrogenase activity as an indicator of the overall soil microbial activity. At full flowering, the effects of inoculation on the length of the above-ground plant part and root length were assessed. At full maturity, pod number, grain number and grain weight per plant were determined. The results of the study showed that inoculation effect depended on the type of inoculant, i.e., on interactions among the microorganisms used

    Stress Hormone Corticosterone Controls Metabolic Mitochondrial Performance and Inflammatory Signaling of In Vitro Cultured Sertoli Cells

    No full text
    Stress, as a physiological response, is a major factor that affects several processes, including reproductive functions. The main hormonal players of stress are cortisol (humans) and corticosterone (rodents). Sertoli cells (SCs), as key contributors for the testicular homeostasis maintenance, are extensively challenged by different hormones, with glucocorticoid corticosterone being the signaling modulator that may impact these cells at different levels. We aimed to characterize how corticosterone modulates SCs energy balance, putting the mitochondrial performance and signaling output in perspective as the cells can disperse to the surroundings. TM4 mouse SCs were cultured in the absence and presence of corticosterone (in nM: 20, 200, and 2000). Cells were assessed for extracellular metabolic fluxes, mitochondrial performance (cell respirometry, mitochondrial potential, and mitochondrial complex expressions and activities), and the expression of androgen and corticosteroid receptors, as well as interleukine-6 (IL-6) and glutathione content. Corticosterone presented a biphasic impact on the extracellular fluxes of metabolites. Low sub-physiological corticosterone stimulated the glycolytic activity of SCs. Still, no alterations were perceived for lactate and alanine production. However, the lactate/alanine ratio was decreased in a dose-dependent mode, opposite to the mitochondrial complex II activity rise and concurrent with the decrease of IL-6 expression levels. Our results suggest that corticosterone finely tuned the energetic profile of mouse SCs, with sub-physiological concentrations promoting glycolytic expenditure, without translating into cell redox power and mitochondrial respiratory chain performance. Corticosterone deeply impacted the expression of the pro-inflammatory IL-6, which may alter cell-to-cell communication in the testis, in the last instance and impact of the spermatogenic performance
    corecore