33 research outputs found

    WNT signalling in prostate cancer

    Get PDF
    Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer

    Normal stem cells in cancer prone epithelial tissues

    Get PDF
    The concept of a cancer stem cell is not a new one, being first suggested over 100 years ago. Over recent years the concept has enjoyed renewed enthusiasm, partly because of our growing understanding of the nature of somatic stem cells, but also because of a growing realisation that the development of strategies that target cancer stem cells may offer considerable advantages over conventional approaches. However, despite this renewed enthusiasm the existence of cancer stem cells remains controversial in many tumour types and any potential relationship to the normal stem cell pool remains poorly defined. This review summarises key elements of our understanding of the normal stem cell populations within animal models of the predominant cancer prone epithelial tissues, and further investigates the potential links between these populations and putative cancer stem cells

    Development of a low-seroprevalence, αvβ6 integrin-selective virotherapy based on human adenovirus type 10

    Get PDF
    Oncolytic virotherapies (OV) hold immense clinical potential. OV based on human adenoviruses (HAdV) derived from HAdV with naturally low rates of pre- existing immunity will be beneficial for future clinical translation. We generated a low- seroprevalence HAdV-D10 serotype vector incorporating an αvβ6 integrin-selective peptide, A20, to target αvβ6-positive tumor cell types. HAdV-D10 has limited natural tropism. Structural and biological studies of HAdV-D10 knob protein highlighted low-affinity engagement with native adenoviral receptors CAR and sialic acid. HAdV-D10 fails to engage blood coagulation factor X, potentially eliminating “off-target” hepatic sequestration in vivo. We engineered an A20 peptide that selectively binds αvβ6 integrin into the DG loop of HAdV-D10 fiber knob. Assays in αvβ6+ cancer cell lines demonstrated significantly increased transduction mediated by αvβ6-targeted variants compared with controls, confirmed microscopically. HAdV-D10.A20 resisted neutralization by neutralizing HAdV-C5 sera. Systemic delivery of HAdV-D10.A20 resulted in significantly increased GFP expression in BT20 tumors. Replication-competent HAdV-D10.A20 demonstrated αvβ6 integrin-selective cell killing in vitro and in vivo. HAdV-D10 possesses characteristics of a promising virotherapy, combining low seroprevalence, weak receptor interactions, and reduced off-target uptake. Incorporation of an αvβ6 integrin-selective peptide resulted in HAdV-D10.A20, with significant potential for clinical translation

    Wnt signaling in triple-negative breast cancer

    Get PDF
    Wnt signaling regulates a variety of cellular processes, including cell fate, differentiation, proliferation and stem cell pluripotency. Aberrant Wnt signaling is a hallmark of many cancers. An aggressive subtype of breast cancer, known as triple-negative breast cancer (TNBC), demonstrates dysregulation in canonical and non-canonical Wnt signaling. In this review, we summarize regulators of canonical and non-canonical Wnt signaling, as well as Wnt signaling dysfunction that mediates the progression of TNBC. We review the complex molecular nature of TNBC and the emerging therapies that are currently under investigation for the treatment of this disease

    Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo

    Get PDF
    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein

    The Central Role of Wnt Signaling and Organoid Technology in Personalizing Anticancer Therapy

    No full text
    © 2017. The Wnt pathway is at the heart of organoid technology, which is set to revolutionize the cancer field. We can now predetermine a patient's response to any given anticancer therapy by exposing tumor organoids established from the patient's own tumor. This cutting-edge biomedical platform translates to patients being treated with the correct drug at the correct dose from the outset, a truly personalized and precise medical approach. A high throughput drug screen on organoids also allows drugs to be tested in limitless combinations. More recently, the tumor cells that are resistant to the therapy given to a patient were selected in culture using the patient's organoids. The resistant tumor organoids were then screened empirically to identify drugs that will kill the resistant cells. This information allows diagnosis in real-time to either prevent tumor recurrence or effectively treat the recurring tumor. Furthermore, the ability to culture stem cell-derived epithelium as organoids has enabled us to begin to understand how a stem cell becomes a cancer cell or to pin-point the genetic alteration that underlies a given genetic syndrome. Here we summarize these advances and the central role of Wnt signaling, and identify the next challenges for organoid technology

    Deficiency of Mbd2 Attenuates Wnt Signaling

    No full text
    We have previously shown that deficiency of the methyl binding domain protein Mbd2 dramatically reduces adenoma burden on an Apc(Min/+) background. To investigate the mechanism underlying this phenomenon, we have determined the effect of Mbd2 deficiency upon the phenotypes imposed by the conditional deletion of Apc in the small intestine. Microarray analysis demonstrated a partial suppression of the Wnt pathway in the absence of Mbd2. Mbd2 deficiency also influenced one immediate cellular consequence of Apc loss, with normalization of Paneth cell positioning. From a mechanistic perspective, we show that deficiency of Mbd2 elevates levels of the known Wnt target Lect2, and we confirm here that Mbd2 binds the Lect2 promoter in association with NuRD. Furthermore, we show that Lect2 is capable of functioning as a Wnt pathway repressor. These results therefore provide a mechanistic basis for the epigenetic control of adenoma formation mediated through Mbd2

    The Hepatitis B Virus Pre-Core Protein p22 Activates Wnt Signaling

    Get PDF
    An emerging theme for Wnt-addicted cancers is that the pathway is regulated at multiple steps via various mechanisms. Infection with hepatitis B virus (HBV) is a major risk factor for liver cancer, as is deregulated Wnt signaling, however, the interaction between these two causes is poorly understood. To investigate this interaction, we screened the effect of the various HBV proteins for their effect on Wnt/β-catenin signaling and identified the pre-core protein p22 as a novel and potent activator of TCF/β-catenin transcription. The effect of p22 on TCF/β-catenin transcription was dose dependent and inhibited by dominant-negative TCF4. HBV p22 activated synthetic and native Wnt target gene promoter reporters, and TCF/β-catenin target gene expression in vivo. Importantly, HBV p22 activated Wnt signaling on its own and in addition to Wnt or β-catenin induced Wnt signaling. Furthermore, HBV p22 elevated TCF/β-catenin transcription above constitutive activation in colon cancer cells due to mutations in downstream genes of the Wnt pathway, namely APC and CTNNB1. Collectively, our data identifies a previously unappreciated role for the HBV pre-core protein p22 in elevating Wnt signaling. Understanding the molecular mechanisms of p22 activity will provide insight into how Wnt signaling is fine-tuned in cancer

    Scrib heterozygosity predisposes to lung cancer and cooperates with KRas hyperactivation to accelerate lung cancer progression in vivo

    No full text
    Lung cancer is the leading cause of cancer deaths worldwide with non small-cell lung cancer (NSCLC) accounting for 80% of all lung cancers. Although activating mutations in genes of the RAS-MAPK pathway occur in up to 30% of all NSCLC, the cooperating genetic lesions that are required for lung cancer initiation and progression remain poorly understood. Here we identify a role for the cell polarity regulator Scribble (Scrib) in NSCLC. A survey of genomic databases reveals deregulation of SCRIB in human lung cancer and we show that Scrib+/− mutant mice develop lung cancer by 540 days with a penetrance of 43%. To model NSCLC development in vivo, we used the extensively characterized LSL-KRasG12D murine model of NSCLC. We show that loss of Scrib and activated oncogenic KRas cooperate in vivo, resulting in more aggressive lung tumors, likely due to a synergistic elevation in RAS–MAPK signaling. Finally, we provide data consistent with immune infiltration having an important role in the acceleration of tumorigenesis in KRasG12D lung tumors following Scrib loss

    Therapeutic inhibition of jak activity inhibits progression of gastrointestinal tumors in mice

    No full text
    Aberrant activation of the latent transcription factor STAT3 and its downstream targets is a common feature of epithelial-derived human cancers, including those of the gastrointestinal tract. Mouse models of gastrointestinal malignancy implicate Stat3 as a key mediator of inflammatory-driven tumorigenesis, in which its cytokine/gp130/Janus kinase (Jak)–dependent activation provides a functional link through which the microenvironment sustains tumor promotion. Although therapeutic targeting of STAT3 is highly desirable, such molecules are not available for immediate clinical assessment. Here, we investigated whether the small-molecule Jak1/2 inhibitor AZD1480 confers therapeutic benefits in two mouse models of inflammation-associated gastrointestinal cancer, which are strictly dependent of excessive Stat3 activation. We confirm genetically that Cre-mediated, tumor cell–specific reduction of Stat3 expression arrests the growth of intestinal-type gastric tumors in gp130F/F mice. We find that systemic administration of AZD1480 readily replicates this effect, which is associated with reduced Stat3 activation and correlates with diminished tumor cell proliferation and increased apoptosis. Likewise, AZD1480 therapy also conferred a cytostatic effect on established tumors in a colitis-associated colon cancer model in wild-type mice. As predicted from our genetic observations in gp130F/F mice, the therapeutic effect of AZD1480 remains fully reversible upon cessation of compound administration. Collectively, our results provide the first evidence that pharmacologic targeting of excessively activated wild-type Jak kinases affords therapeutic suppression of inflammation-associated gastrointestinal cancers progressio
    corecore