8,326 research outputs found
A modified method of integral relations approach to the blunt-body equilibrium air flow field, including comparisons with inverse solutions
Numerical calculation of inviscid adiabatic flow field around blunt bodies at hypersonic speed
Ambitious STS-7 mission to feature first landing at Kennedy
The STS-7 press briefing schedule, NASA select television schedule; launch preparations, countdown and liftoff; major countdown milestones; launch window; STS-7 flight sequence of events, landing timeline; STS-7 flight timeline; landing and post landing operations; flight objectives; Telesat's ANIK-C 2; PALAPA-B; STS-7 experiments; and spacecraft tracking and data network are presented
Design considerations for the use of laser-plasma accelerators for advanced space radiation studies
We present design considerations for the use of laser-plasma accelerators for mimicking space radiation and testing space-grade electronics. This novel application takes advantage of the inherent ability of laser-plasma accelerators to produce particle beams with exponential energy distribution, which is a characteristic shared with the hazardous relativistic electron flux present in the radiation belts of planets such as Earth, Saturn and Jupiter. Fundamental issues regarding laser-plasma interaction parameters, beam propagation, flux development, and experimental setup are discussed
Getting the Measure of the Flatness Problem
The problem of estimating cosmological parameters such as from noisy
or incomplete data is an example of an inverse problem and, as such, generally
requires a probablistic approach. We adopt the Bayesian interpretation of
probability for such problems and stress the connection between probability and
information which this approach makes explicit.
This connection is important even when information is ``minimal'' or, in
other words, when we need to argue from a state of maximum ignorance. We use
the transformation group method of Jaynes to assign minimally--informative
prior probability measure for cosmological parameters in the simple example of
a dust Friedman model, showing that the usual statements of the cosmological
flatness problem are based on an inappropriate choice of prior. We further
demonstrate that, in the framework of a classical cosmological model, there is
no flatness problem.Comment: 11 pages, submitted to Classical and Quantum Gravity, Tex source
file, no figur
A controlled experiment for the empirical evaluation of safety analysis techniques for safety-critical software
Context: Today's safety critical systems are increasingly reliant on
software. Software becomes responsible for most of the critical functions of
systems. Many different safety analysis techniques have been developed to
identify hazards of systems. FTA and FMEA are most commonly used by safety
analysts. Recently, STPA has been proposed with the goal to better cope with
complex systems including software. Objective: This research aimed at comparing
quantitatively these three safety analysis techniques with regard to their
effectiveness, applicability, understandability, ease of use and efficiency in
identifying software safety requirements at the system level. Method: We
conducted a controlled experiment with 21 master and bachelor students applying
these three techniques to three safety-critical systems: train door control,
anti-lock braking and traffic collision and avoidance. Results: The results
showed that there is no statistically significant difference between these
techniques in terms of applicability, understandability and ease of use, but a
significant difference in terms of effectiveness and efficiency is obtained.
Conclusion: We conclude that STPA seems to be an effective method to identify
software safety requirements at the system level. In particular, STPA addresses
more different software safety requirements than the traditional techniques FTA
and FMEA, but STPA needs more time to carry out by safety analysts with little
or no prior experience.Comment: 10 pages, 1 figure in Proceedings of the 19th International
Conference on Evaluation and Assessment in Software Engineering (EASE '15).
ACM, 201
Indirect measures of learning transfer between real and virtual environments
This paper reports on research undertaken to determine the effectiveness of a 3D simulation environment used to train mining personnel in emergency evacuation procedures, designated the Fires in Underground Mines Evacuation Simulator (FUMES). Owing to the operational constraints of the mining facility, methods for measuring learning transfer were employed which did not require real world performance evaluation. Transfer measures that examined simulator performance relative to real world experience, fidelity assessment, and appraisal of the training value of the platform were utilised. Triangulation of results across all three measures indicated the presence of learning transfer, suggesting the viability of indirect measures in instances where real world performance testing is not possible. Furthermore, these indirect measures of learning transfer also provided some insight as to the strengths and weaknesses of the simulation design, which could be used to inform the development of future versions of the product
Hybridization gap versus hidden order gap in URuSi as revealed by optical spectroscopy
We present the in-plane optical reflectance measurement on single crystals of
URuAs. The study revealed a strong temperature-dependent spectral
evolution. Above 50 K, the low frequency optical conductivity is rather flat
without a clear Drude-like response, indicating a very short transport life
time of the free carriers. Well below the coherence temperature, there appears
an abrupt spectral weight suppression below 400 cm, yielding evidence
for the formation of a hybridization energy gap arising from the mixing of the
conduction electron and narrow f-electron bands. A small part of the suppressed
spectral weight was transferred to the low frequency side, leading to a narrow
Drude component, while the majority of the suppressed spectral weight was
transferred to the high frequency side centered near 4000 cm. Below the
hidden order temperature, another very prominent energy gap structure was
observed, which leads to the removal of a large part of the Drude component and
a sharp reduction of the carrier scattering rate. The study revealed that the
hybridization gap and the hidden orger gap are distinctly different: they occur
at different energy scales and exhibit completely different spectral
characteristics.Comment: 5 page
- …