975 research outputs found

    Defects in the Tri-critical Ising model

    Get PDF
    We consider two different conformal field theories with central charge c=7/10. One is the diagonal invariant minimal model in which all fields have integer spins; the other is the local fermionic theory with superconformal symmetry in which fields can have half-integer spin. We construct new conformal (but not topological or factorised) defects in the minimal model. We do this by first constructing defects in the fermionic model as boundary conditions in a fermionic theory of central charge c=7/5, using the folding trick as first proposed by Gang and Yamaguchi. We then acting on these with interface defects to find the new conformal defects. As part of the construction, we find the topological defects in the fermionic theory and the interfaces between the fermionic theory and the minimal model. We also consider the simpler case of defects in the theory of a single free fermion and interface defects between the Ising model and a single fermion as a prelude to calculations in the tri-critical Ising model.Comment: 54 pages, 5 figures, version as accepted for publication with minor change

    The reflection coefficient for minimal model conformal defects from perturbation theory

    Get PDF
    We consider a class of conformal defects in Virasoro minimal models that have been defined as fixed points of the renormalisation group and calculate the leading contribution to the reflection coefficient for these defects. This requires several structure constants of the operator algebra of the defect fields, for which we present a derivation in detail. We compare our results with our recent work on conformal defects in the tricritical Ising model.Comment: 22 pages; v2: minor changes, defect field transformation law clarified, reference adde

    U(1) symmetry breaking in one-dimensional Mott insulator studied by the Density Matrix Renormalization Group method

    Get PDF
    A new type of external fields violating the particle number preservation is studied in one-dimensional strongly correlated systems by the Density Matrix Renormalization Group method. Due to the U(1) symmetry breaking, the ground state has fluctuation of the total particle number, which implies injection of electrons and holes from out of the chain. This charge fluctuation can be relevant even at half-filling because the particle-hole symmetry is preserved with the finite effective field. In addition, we discuss a quantum phase transition obtained by considering the symmetry-breaking fields as a mean field of interchain-hopping.Comment: 7 pages, 4 figure

    Topological quantum phase transition in the BEC-BCS crossover phenomena

    Get PDF
    A crossover between the Bose Einstein condensation (BEC) and BCS superconducting state is described topologically in the chiral symmetric fermion system with attractive interaction. Using a local Z_2 Berry phase, we found a quantum phase transition between the BEC and BCS phases without accompanying the bulk gap closing.Comment: 4 pages, 5 figure

    Fabrication of submicron La2−x_{2-x}Srx_{x}CuO4_{4} intrinsic Josephson junction stacks

    Full text link
    Intrinsic Josephson junction (IJJ) stacks of cuprate superconductors have potential to be implemented as intrinsic phase qubits working at relatively high temperatures. We report success in fabricating submicron La2−x_{2-x}Srx_{x}CuO4_{4} (LSCO) IJJ stacks carved out of single crystals. We also show a new fabrication method in which argon ion etching is performed after focused ion beam etching. As a result, we obtained an LSCO IJJ stack in which resistive multi-branches appeared. It may be possible to control the number of stacked IJJs with an accuracy of a single IJJ by developing this method.Comment: 5 pages, 6 figure

    Neutron scattering study on spin correlations and fluctuations in the transition-metal-based magnetic quasicrystal Zn-Fe-Sc

    Full text link
    Spin correlations and fluctuations in the 3d-transition-metal-based icosahedral quasicrystal Zn-Fe-Sc have been investigated by neutron scattering using polycrystalline samples. Magnetic diffuse scattering has been observed in the elastic experiment at low temperatures, indicating development of static short-range-spin correlations. In addition, the inelastic scattering experiment detects a QQ-independent quasielastic signal ascribed to single-site relaxational spin fluctuations. Above the macroscopic freezing temperature Tf≃7T_{\rm f} \simeq 7 K, the spin relaxation rate shows Arrhenius-type behavior, indicating thermally activated relaxation process. In contrast, the relaxation rate remains finite even at the lowest temperature, suggesting a certain quantum origin for the spin fluctuations below TfT_{\rm f}.Comment: To be published in Phys. Rev.

    Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices

    Get PDF
    This review provides an overview of major microengineering emulsification techniques for production of monodispersed droplets. The main emphasis has been put on membrane emulsification using Shirasu Porous Glass and microsieve membrane, microchannel emulsification using grooved-type and straight-through microchannel plates, microfluidic junctions and flow focusing microfluidic devices. Microfabrication methods for production of planar and 3D poly(dimethylsiloxane) devices, glass capillary microfluidic devices and single-crystal silicon microchannel array devices have been described including soft lithography, glass capillary pulling and microforging, hot embossing, anisotropic wet etching and deep reactive ion etching. In addition, fabrication methods for SPG and microseive membranes have been outlined, such as spinodal decomposition, reactive ion etching and ultraviolet LIGA (Lithography, Electroplating, and Moulding) process. The most widespread application of micromachined emulsification devices is in the synthesis of monodispersed particles and vesicles, such as polymeric particles, microgels, solid lipid particles, Janus particles, and functional vesicles (liposomes, polymersomes and colloidosomes). Glass capillary microfluidic devices are very suitable for production of core/shell drops of controllable shell thickness and multiple emulsions containing a controlled number of inner droplets and/or inner droplets of two or more distinct phases. Microchannel emulsification is a very promising technique for production of monodispersed droplets with droplet throughputs of up to 100 l h−1

    Theorems on ground-state phase transitions in Kohn-Sham models given by the Coulomb density functional

    Full text link
    Some theorems on derivatives of the Coulomb density functional with respect to the coupling constant λ\lambda are given. Consider an electron density nGS(r)n_{GS}({\bf r}) given by a ground state. A model Fermion system with the reduced coupling constant, λ<1\lambda<1, is defined to reproduce nGS(r)n_{GS}({\bf r}) and the ground state energy. Fixing the charge density, possible phase transitions as level crossings detected in a value of the reduced density functional happen only at discrete points along the λ\lambda axis. If the density is vv-representable also for λ<1\lambda<1, accumulation of phase transition points is forbidden when λ→1\lambda\rightarrow 1. Relevance of the theorems for the multi-reference density functional theory is discussed.Comment: 19 page
    • …
    corecore