839 research outputs found

    Violation of Leggett-Garg inequalities in quantum measurements with variable resolution and back-action

    Full text link
    Quantum mechanics violates Leggett-Garg inequalities because the operator formalism predicts correlations between different spin components that would correspond to negative joint probabilities for the outcomes of joint measurements. However, the uncertainty principle ensures that such joint measurements cannot be implemented without errors. In a sequential measurement of the spin components, the resolution and back-action errors of the intermediate measurement can be described by random spin flips acting on an intrinsic joint probability. If the error rates are known, the intrinsic joint probability can be reconstructed from the noisy statistics of the actual measurement outcomes. In this paper, we use the spin-flip model of measurement errors to analyze experimental data on photon polarization obtained with an interferometric setup that allows us to vary the measurement strength and hence the balance between resolution and back-action errors. We confirm that the intrinsic joint probability obtained from the experimental data is independent of measurement strength and show that the same violation of the Leggett-Garg inequality can be obtained for any combination of measurement resolution and back-action.Comment: 17 pages, 7 figure

    Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands

    Get PDF
    Monomethylamine (MA), dimethylamine (DMA) and diethylamine (DEA) were detected at non-negligible concentrations in sub-micrometer particles at the Cap Verde Atmospheric Observatory (CVAO) located on the island of São Vicente in Cape Verde during algal blooms in 2007. The concentrations of these amines in five stage impactor samples ranged from 0–30 pg m−3 for MA, 130–360 pg m−3 for DMA and 5–110 pg m−3 for DEA during the spring bloom in May 2007 and 2–520 pg m−3 for MA, 100–1400 pg m−3 for DMA and 90–760 pg m−3 for DEA during an unexpected winter algal bloom in December 2007. Anomalously high Saharan dust deposition and intensive ocean layer deepening were found at the Atmospheric Observatory and the associated Ocean Observatory during algal bloom periods. The highest amine concentrations in fine particles (impactor stage 2, 0.14–0.42 μm) indicate that amines are likely taken up from the gas phase into the acidic sub-micrometer particles. The contribution of amines to the organic carbon (OC) content ranged from 0.2–2.5% C in the winter months, indicating the importance of this class of compounds to the carbon cycle in the marine environment. Furthermore, aliphatic amines originating from marine biological sources likely contribute significantly to the nitrogen content in the marine atmosphere. The average contribution of the amines to the detected nitrogen species in sub-micrometer particles can be non-negligible, especially in the winter months (0.1% N–1.5% N in the sum of nitrate, ammonium and amines). This indicates that these smaller aliphatic amines can be important for the carbon and the nitrogen cycles in the remote marine environment

    Target implosion uniformity in heavy ion fusion

    Get PDF
    It is well known that heavy ion beams (HIBs) have a high controllability, a high driver energy conversion efficiency and a high repetition rate. Wobbling HIBs are easily available as the energy driver in inertial fusion..

    Researches on reactor core in Heavy ion inertial fusion

    Get PDF
    In Heavy ion inertial fusion (HIF), the issues include the generation and transport of heavy ion beam (HIB), the optimum pellet structure, the realistic nuclear fusion reactor design, etc. In this research, we have studied a conceptual design of a nuclear fusion reactor system in HIF (see Fig. 1)..

    Control of fuel target implosion non-uniformity in heavy ion inertial fusion

    Get PDF
    implosion is one of issues to achieve ignition in inertial fusion targets, and has been studied by various mitigation mechanisms. The nonuniformity is caused by several factors. The Rayleigh-Taylor instability (RTI) is one of them

    Target implosion uniformity in heavy ion fusion

    Get PDF
    It is well known that heavy ion beams (HIBs) have a high controllability, a high driver energy conversion efficiency and a high repetition rate. Wobbling HIBs are easily available as the energy driver in inertial fusion..

    Control of fuel target implosion non-uniformity in heavy ion inertial fusion

    Get PDF
    implosion is one of issues to achieve ignition in inertial fusion targets, and has been studied by various mitigation mechanisms. The nonuniformity is caused by several factors. The Rayleigh-Taylor instability (RTI) is one of them
    corecore