8,389 research outputs found

    A Method to Calculate Fission-Fragment Yields Y(Z,N)Y(Z,N) versus Proton and Neutron Number in the Brownian Shape-Motion Model. Application to calculations of U and Pu charge yields

    Full text link
    We propose a method to calculate the two-dimensional (2D) fission-fragment yield Y(Z,N)Y(Z,N) versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment Q2Q_2), neck dd, left nascent fragment spheroidal deformation ϵf1\epsilon_{\rm f1}, right nascent fragment deformation ϵf2\epsilon_{\rm f2} and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method to calculate this generalized potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of ZZ and NN of the compound system and its shape, including the asymmetry of the shape. We outline here how to generalize the model from the "compound-system" model to a model where the emerging fragment proton and neutron numbers also enter, over and above the compound system composition

    Effect of stripe order strength for the Nernst effect in La_{2-x}Sr_xCu_4 single crystals

    Full text link
    We have precisely measured the Nernst effect in Nd-doped La2x_{2-x}Srx_xCuO4_4 single crystals with controlling the strength (stability) of the stripe order. We found that the onset temperature TonsetT_{onset}, where the Nernst signal starts increasing, does not change conspicuously in spite of Nd-doping. At low temperatures, on the other hand, the absolute value of the Nernst signal is strongly suppressed in accordance with the strength of the stripe order. These results imply that the fluctuation of (charge) stripe order enhances the Nernst signal below TonsetT_{onset} at high temperatures, and then the stripe order enhanced by Nd-doping suppresses the superconducting fluctuation to reduce the Nernst signal at low temperatures. We also observed an increase of the Nernst signal below the charge order temperature TchT_{ch} which is observed in diffraction measurement.Comment: 3pages, 2figure

    Nuclear ground-state masses and deformations: FRDM(2012)

    Full text link
    We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16^{16}O to A=339A=339. The calculations are based on the finite-range droplet macroscopic model and the folded-Yukawa single-particle microscopic model. Relative to our FRDM(1992) mass table in {\sc Atomic Data and Nuclear Data Tables} [{\bf 59} 185 (1995)], the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allows us to determine one additional macroscopic-model parameter, the density-symmetry coefficient LL, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses. The values of ten constants are determined directly from an optimization to fit ground-state masses of 2149 nuclei ranging from 16^{16}O to 106265^{265}_{106}Sg and 108264^{264}_{108}Hs. The error of the mass model is 0.5595~MeV. We also provide masses in the FRLDM, which in the more accurate treatments now has an error of 0.6618 MeV. But in contrast to the FRDM, it is suitable for studies of fission and has been extensively so applied elsewhere, with FRLDM(2002) constants. The FRLDM(2012) fits 31 fission barrier heights from 70^{70}Se to 252^{252}Cf with a root-mean-square deviation of 1.052 MeV.Comment: 233 pages, 41 figures. arXiv admin note: text overlap with arXiv:nucl-th/930802

    Pure Collective Precession Motion of High-Spin Torus Isomer

    Full text link
    We investigate the precession motion of the exotic torus configuration in high-spin excited states of 40^{40}Ca. For this aim, we use the three-dimensional time-dependent Hartree-Fock (TDHF) method. Although the high-spin torus isomer is a unique quantum object characterized by the alignment of angular momenta of independent single-particle motions, we find that the obtained moment of inertia for rotations about an axis perpendicular to the symmetry axis is close to the rigid-body value. We also analyze the microscopic structure of the precession motion using the random-phase approximation (RPA) method for high-spin states. In the RPA calculation, the precession motion of the torus isomer is generated by coherent superposition of many one-particle-one-hole excitations across the sloping Fermi surface that strongly violates the time-reversal symmetry. By comparing results of the TDHF and the RPA calculations, we find that the precession motion obtained by the TDHF calculation is a pure collective motion well decoupled from other collective modes

    Real-time simulation of jet engines with digital computer. 1: Fabrication and characteristics of the simulator

    Get PDF
    The fabrication and performance of a real time jet engine simulator using a digital computer are discussed. The use of the simulator in developing the components and control system of a jet engine is described. Comparison of data from jet engine simulation tests with actual engine tests was conducted with good agreement

    Three triton states in 9Li

    Full text link
    We focus on a characteristic non-alpha cluster structure in light neutron-rich nuclei; three triton structure in 9Li. This is an analogy to the case of three alpha state in 12C (Hoyle state). The alpha clusters behave as bosons. however tritons have Fermionic nature, and how the three cluster structure is different from 12C is an intriguing problem. For this purpose, we introduce three triton wave functions. In addition, alpha+t+n+n wave functions are prepared to describe other low-lying states of 9Li, and the coupling effect between them is taken into account. The states with dominantly the three triton components appear below the three triton threshold energy, where three triton correlation is important, however the root mean square radius is not enhanced contrary to the alpha gas states in 12C and 16O.Comment: 5 pages, 4 figure
    corecore