4,346 research outputs found

    Coexistence of pairing gaps in three-component Fermi gases

    Full text link
    We study a three-component superfluid Fermi gas in a spherically symmetric harmonic trap using the Bogoliubov-deGennes method. We predict a coexistence phase in which two pairing field order parameters are simultaneously nonzero, in stark contrast to studies performed for trapped gases using local density approximation. We also discuss the role of atom number conservation in the context of a homogeneous system.Comment: Text revised, added two figures and three reference

    Cooper-pair resonances and subgap Coulomb blockade in a superconducting single-electron transistor

    Full text link
    We have fabricated and measured superconducting single-electron transistors with Al leads and Nb islands. At bias voltages below the gap of Nb we observe clear signatures of resonant tunneling of Cooper pairs, and of Coulomb blockade of the subgap currents due to linewidth broadening of the energy levels in the superconducting density of states of Nb. The experimental results are in good agreement with numerical simulations.Comment: 4 pages, 3 figure

    Bragg spectroscopy of a strongly interacting Bose-Einstein condensate

    Full text link
    We study Bragg spectroscopy of a strongly interacting Bose-Einstein condensate using time-dependent Hartree-Fock-Bogoliubov theory. We include approximatively the effect of the momentum dependent scattering amplitude which is shown to be the dominant factor in determining the spectrum for large momentum Bragg scattering. The condensation of the Bragg scattered atoms is shown to significantly alter the observed excitation spectrum by creating a novel pairing channel of mobile pairs.Comment: 11 pages, 4 figure

    Imbalanced Superfluid Phase of a Trapped Fermi Gas in the BCS-BEC Crossover Regime

    Full text link
    We theoretically investigate the ground state of trapped neutral fermions with population imbalance in the BCS-BEC crossover regime. On the basis of the single-channel Hamiltonian, we perform full numerical calculations of the Bogoliubov-de Gennes equation coupled with the regularized gap and number equations. The zero-temperature phase diagram in the crossover regime is presented, where the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing state governs the weak-coupling BCS region of a resonance. It is found that the FFLO oscillation vanishes in the BEC side, in which the system under population imbalance turns into a phase separation (PS) between locally binding superfluid and fully polarized spin domains. We also demonstrate numerical calculations with a large particle number O(10^5), comparable to that observed in recent experiments. The resulting density profile on a resonance yields the PS, which is in good agreement with the recent experiments, while the FFLO modulation exists in the pairing field. It is also proposed that the most favorable location for the detection of the FFLO oscillation is in the vicinity of the critical population imbalance in the weak coupling BCS regime, where the oscillation periodicity becomes much larger than the interparticle spacing. Finally, we analyze the radio-frequency (RF) spectroscopy in the imbalanced system. The clear difference in the RF spectroscopy between BCS and BEC sides reveals the structure of the pairing field and local ``magnetization''.Comment: 16 pages, 13 figures, replaced by the version to appear in J. Phys. Soc. Jp
    corecore