374 research outputs found

    HIV-1 latent reservoir: size matters.

    Get PDF
    More than 35 million people remain infected with HIV-1. Upon antiretroviral therapy cessation, HIV-1-positive individuals systematically fail to achieve sustained virological remission, revealing the presence of a reservoir. This reservoir takes into account anatomical sanctuaries where HIV-1 continues to replicate, and latently infected cells also known as the latent reservoir (LR). A better understanding of the nature and features of the LR and its quantification are crucial to evaluate the efficiency of therapeutic strategies aiming at purging HIV-1. Culture- and PCR-based assays have already been implemented to measure the LR, and new assays are continuously being developed. In this review, we will discuss these methods highlighting the difficulties to accurately measure the LR, one main obstacle in curing HIV-1

    Seltene Ursache einer Dysurie

    Full text link

    Solving Large Sparse Lyapunov Equations on Parallel Computers

    Full text link
    Abstract. This paper describes the parallelization of the low-rank ADI iteration for the solution of large-scale, sparse Lyapunov equations. The only relevant operations involved in the method are matrix-vector prod-ucts and the solution of linear systems. Experimental results on a cluster, using the SuperLU library, show the performance of this approach

    Nucleocytoplasmic transport: a thermodynamic mechanism

    Full text link
    The nuclear pore supports molecular communication between cytoplasm and nucleus in eukaryotic cells. Selective transport of proteins is mediated by soluble receptors, whose regulation by the small GTPase Ran leads to cargo accumulation in, or depletion from the nucleus, i.e., nuclear import or nuclear export. We consider the operation of this transport system by a combined analytical and experimental approach. Provocative predictions of a simple model were tested using cell-free nuclei reconstituted in Xenopus egg extract, a system well suited to quantitative studies. We found that accumulation capacity is limited, so that introduction of one import cargo leads to egress of another. Clearly, the pore per se does not determine transport directionality. Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic concentration in steady-state. The model shows that this ratio should in fact be independent of the receptor-cargo affinity, though kinetics may be strongly influenced. Numerical conservation of the system components highlights a conflict between the observations and the popular concept of transport cycles. We suggest that chemical partitioning provides a framework to understand the capacity to generate concentration gradients by equilibration of the receptor-cargo intermediary.Comment: in press at HFSP Journal, vol 3 16 text pages, 1 table, 4 figures, plus Supplementary Material include

    Human genomics of the humoral immune response against polyomaviruses

    Get PDF
    Publisher Copyright: © The Author(s) 2021. Published by Oxford University Press.Human polyomaviruses are widespread in humans and can cause severe disease in immunocompromised individuals. To identify human genetic determinants of the humoral immune response against polyomaviruses, we performed genome-wide association studies and meta-analyses of qualitative and quantitative immunoglobulin G responses against BK polyomavirus (BKPyV), JC polyomavirus (JCPyV), Merkel cellpolyomavirus (MCPyV), WU polyomavirus (WUPyV), and human polyomavirus 6 (HPyV6) in 15,660 individuals of European ancestry from three independent studies. We observed significant associations for all tested viruses: JCPyV, HPyV6, and MCPyV associated with human leukocyte antigen class II variation, BKPyV and JCPyV with variants in FUT2, responsible for secretor status, MCPyV with variants in STING1, involved in interferon induction, and WUPyV with a functional variant in MUC1, previously associated with risk for gastric cancer. These results provide insights into the genetic control of a family of very prevalent human viruses, highlighting genes and pathways that play a modulating role in human humoral immunity.Peer reviewe

    Recurrence quantification analysis as a tool for the characterization of molecular dynamics simulations

    Full text link
    A molecular dynamics simulation of a Lennard-Jones fluid, and a trajectory of the B1 immunoglobulin G-binding domain of streptococcal protein G (B1-IgG) simulated in water are analyzed by recurrence quantification, which is noteworthy for its independence from stationarity constraints, as well as its ability to detect transients, and both linear and nonlinear state changes. The results demonstrate the sensitivity of the technique for the discrimination of phase sensitive dynamics. Physical interpretation of the recurrence measures is also discussed.Comment: 7 pages, 8 figures, revtex; revised for review for Phys. Rev. E (clarifications and expansion of discussion)-- addition of the 8 postscript figures previously omitted, but unchanged from version

    A high performance liquid chromatographic assay of Mefloquine in saliva after a single oral dose in healthy adult Africans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mefloquine-artesunate is a formulation of artemisinin based combination therapy (ACT) recommended by the World Health Organization and historically the first ACT used clinically. The use of ACT demands constant monitoring of therapeutic efficacies and drug levels, in order to ensure that optimum drug exposure is achieved and detect reduced susceptibility to these drugs. Quantification of anti-malarial drugs in biological fluids other than blood would provide a more readily applicable method of therapeutic drug monitoring in developing endemic countries. Efforts in this study were devoted to the development of a simple, field applicable, non-invasive method for assay of mefloquine in saliva.</p> <p>Methods</p> <p>A high performance liquid chromatographic method with UV detection at 220 nm for assaying mefloquine in saliva was developed and validated by comparing mefloquine concentrations in saliva and plasma samples from four healthy volunteers who received single oral dose of mefloquine. Verapamil was used as internal standard. Chromatographic separation was achieved using a Hypersil ODS column.</p> <p>Results</p> <p>Extraction recoveries of mefloquine in plasma or saliva were 76-86% or 83-93% respectively. Limit of quantification of mefloquine was 20 ng/ml. Agreement between salivary and plasma mefloquine concentrations was satisfactory (r = 0.88, <it>p </it>< 0.001). Saliva:plasma concentrations ratio was 0.42.</p> <p>Conclusion</p> <p>Disposition of mefloquine in saliva paralleled that in plasma, making salivary quantification of mefloquine potentially useful in therapeutic drug monitoring.</p

    Analysis of RNA Binding by the Dengue Virus NS5 RNA Capping Enzyme

    Get PDF
    Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5′ end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the KD for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5′ phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5′ di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented
    corecore