41 research outputs found

    Sign reversal of field-angle resolved heat capacity oscillations in a heavy fermion superconductor CeCoIn5_5 and dx2y2d_{x^2-y^2} pairing symmetry

    Full text link
    To identify the superconducting gap symmetry in CeCoIn5 (Tc=2.3 K), we performed angle-resolved specific heat (C_\phi) measurements in a field rotated around the c-axis down to very low temperatures 0.05Tc and detailed theoretical calculations. In a field of 1 T, a sign reversal of the fourfold angular oscillation in C_\phi has been observed at T ~ 0.1Tc on entering a quasiclassical regime where the maximum of C_\phi corresponds to the antinodal direction, coinciding with the angle-resolved density of states (ADOS) calculation. The C_\phi behavior, which exhibits minima along [110] directions, unambiguously allows us to conclude d_{x^2-y^2} symmetry of this system. The ADOS-quasiclassical region is confined to a narrow T and H domain within T/Tc ~ 0.1 and 1.5 T (0.13Hc2).Comment: 4 pages, 4 figure

    Anisotropic Structure of the Order Parameter in FeSe0.45Te0.55 Revealed by Angle Resolved Specific Heat

    Full text link
    The symmetry and structure of the superconducting gap in the Fe-based superconductors are the central issue for understanding these novel materials. So far the experimental data and theoretical models have been highly controversial. Some experiments favor two or more constant or nearly-constant gaps, others indicate strong anisotropy and yet others suggest gap zeros ("nodes"). Theoretical models also vary, suggesting that the absence or presence of the nodes depends quantitatively on the model parameters. An opinion that has gained substantial currency is that the gap structure, unlike all other known superconductors, including cuprates, may be different in different compounds within the same family. A unique method for addressing this issue, one of the very few methods that are bulk and angle-resolved, calls for measuring the electronic specific heat in a rotating magnetic field, as a function of field orientation with respect to the crystallographic axes. In this Communication we present the first such measurement for an Fe-based high-Tc superconductor (FeBSC). We observed a fourfold oscillation of the specific heat as a function of the in-plane magnetic field direction, which allowed us to identify the locations of the gap minima (or nodes) on the Fermi surface. Our results are consistent with the expectations of an extended s-wave model with a significant gap anisotropy on the electron pockets and the gap minima along the \Gamma M (or Fe-Fe bond) direction.Comment: 32 pages, 7 figure

    Gestão e caracterização do BAG-Passiflora spp. através do Portal Alelo RG da Embrapa.

    Get PDF
    Made available in DSpace on 2018-01-15T23:20:18Z (GMT). No. of bitstreams: 1 14.GestoeCaracterizaodoBAGPassifloraspp.atravsdoPortalAleloRGdaEmbrapa1.pdf: 2164347 bytes, checksum: fbb62c0fea9c7bbbde5305911781ec52 (MD5) Previous issue date: 2018-01-15bitstream/item/171014/1/14.-Gest-o-e-Caracteriza-o-do-BAG-Passiflora-spp.-atrav-s-do-Portal-Alelo-RG-da-Embrapa1.pd

    Gene polymorphisms against DNA damage induced by hydrogen peroxide in leukocytes of healthy humans through comet assay: a quasi-experimental study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normal cellular metabolism is well established as the source of endogenous reactive oxygen species which account for the background levels of oxidative DNA damage detected in normal tissue. Hydrogen peroxide imposes an oxidative stress condition on cells that can result in DNA damage, leading to mutagenesis and cell death. Several potentially significant genetic variants related to oxidative stress have already been identified, and angiotensin I-converting enzyme (ACE) inhibitors have been reported as possible antioxidant agents that can reduce vascular oxidative stress in cardiovascular events.</p> <p>Methods</p> <p>We investigate the influences of haptoglobin, manganese superoxide dismutase (MnSOD Val9Ala), catalase (CAT -21A/T), glutathione peroxidase 1 (GPx-1 Pro198Leu), ACE (I/D) and gluthatione S-transferases GSTM1 and GSTT1 gene polymorphisms against DNA damage and oxidative stress. These were induced by exposing leukocytes from peripheral blood of healthy humans (N = 135) to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and the effects were tested by comet assay. Blood samples were submitted to genotyping and comet assay (before and after treatment with H<sub>2</sub>O<sub>2 </sub>at 250 μM and 1 mM).</p> <p>Results</p> <p>After treatment with H<sub>2</sub>O<sub>2 </sub>at 250 μM, the GPx-1 polymorphism significantly influenced results of comet assay and a possible association of the Pro/Leu genotype with higher DNA damage was found. The highest or lowest DNA damage also depended on interaction between GPX-1/ACE and Hp/GSTM1T1 polymorphisms when hydrogen peroxide treatment increased oxidative stress.</p> <p>Conclusions</p> <p>The GPx-1 polymorphism and the interactions between GPX-1/ACE and Hp/GSTM1T1 can be determining factors for DNA oxidation provoked by hydrogen peroxide, and thus for higher susceptibility to or protection against oxidative stress suffered by healthy individuals.</p
    corecore