22 research outputs found

    Iron Incorporation and Post-Malaria Anaemia

    Get PDF
    BACKGROUND: Iron supplementation is employed to treat post-malarial anaemia in environments where iron deficiency is common. Malaria induces an intense inflammatory reaction that stalls reticulo-endothelial macrophagal iron recycling from haemolysed red blood cells and inhibits oral iron absorption, but the magnitude and duration of these effects are unclear. METHODOLOGY/PRINCIPAL FINDINGS: We examined the red blood cell incorporation of oral administered stable isotopes of iron and compared incorporation between age matched 18 to 36 months old children with either anaemia post-malaria (n = 37) or presumed iron deficiency anaemia alone (n = 36). All children were supplemented for 30 days with 2 mg/kg elemental iron as liquid iron sulphate and administered (57)Fe and (58)Fe on days 1 and 15 of supplementation respectively. (57)Fe and(58)Fe incorporation were significantly reduced (8% vs. 28%: p<0.001 and 14% vs. 26%: p = 0.045) in the malaria vs. non-malaria groups. There was a significantly greater haemoglobin response in the malaria group at both day 15 (p = 0.001) and 30 (p<0.000) with a regression analysis estimated greater change in haemoglobin of 7.2 g/l (s.e. 2.0) and 10.1 g/l (s.e. 2.5) respectively. CONCLUSION/SIGNIFICANCE: Post-malaria anaemia is associated with a better haemoglobin recovery despite a significant depressant effect on oral iron incorporation which may indicate that early erythropoetic iron need is met by iron recycling rather than oral iron. Supplemental iron administration is of questionable utility within 2 weeks of clinical malaria in children with mild or moderate anaemia

    Exposome-Scale Investigations Guided by Global Metabolomics, Pathway Analysis, and Cognitive Computing

    No full text
    Concurrent exposure to a wide variety of xenobiotics and their combined toxic effects can play a pivotal role in health and disease, yet are largely unexplored. Investigating the totality of these exposures, i.e., the “exposome”, and their specific biological effects constitutes a new paradigm for environmental health but still lacks high-throughput, user-friendly technology. We demonstrate the utility of mass spectrometry-based global exposure metabolomics combined with tailored database queries and cognitive computing for comprehensive exposure assessment and the straightforward elucidation of biological effects. The METLIN Exposome database has been redesigned to help identify environmental toxicants, food contaminants and supplements, drugs, and antibiotics as well as their biotransformation products, through its expansion with over 700 000 chemical structures to now include more than 950 000 unique small molecules. More importantly, we demonstrate how the XCMS/METLIN platform now allows for the readout of the biological effect of a toxicant through metabolomic-derived pathway analysis, and further, artificial intelligence provides a means of assessing the role of a potential toxicant. The presented workflow addresses many of the methodological challenges current exposomics research is facing and will serve to gain a deeper understanding of the impact of environmental exposures and combinatory toxic effects on human health

    Arthropod decline in grasslands and forests is associated with landscape-level drivers

    No full text
    Recent reports of local extinctions of arthropod species1, and of massive declines in arthropod biomass2, point to land-use intensification as a major driver of decreasing biodiversity. However, to our knowledge, there are no multisite time series of arthropod occurrences across gradients of land-use intensity with which to confirm causal relationships. Moreover, it remains unclear which land-use types and arthropod groups are affected, and whether the observed declines in biomass and diversity are linked to one another. Here we analyse data from more than 1 million individual arthropods (about 2,700 species), from standardized inventories taken between 2008 and 2017 at 150 grassland and 140 forest sites in 3 regions of Germany. Overall gamma diversity in grasslands and forests decreased over time, indicating loss of species across sites and regions. In annually sampled grasslands, biomass, abundance and number of species declined by 67%, 78% and 34%, respectively. The decline was consistent across trophic levels and mainly affected rare species; its magnitude was independent of local land-use intensity. However, sites embedded in landscapes with a higher cover of agricultural land showed a stronger temporal decline. In 30 forest sites with annual inventories, biomass and species number—but not abundance—decreased by 41% and 36%, respectively. This was supported by analyses of all forest sites sampled in three-year intervals. The decline affected rare and abundant species, and trends differed across trophic levels. Our results show that there are widespread declines in arthropod biomass, abundance and the number of species across trophic levels. Arthropod declines in forests demonstrate that loss is not restricted to open habitats. Our results suggest that major drivers of arthropod decline act at larger spatial scales, and are (at least for grasslands) associated with agriculture at the landscape level. This implies that policies need to address the landscape scale to mitigate the negative effects of land-use practices
    corecore