391 research outputs found
Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory
One component of memory in the antibody system is long-lived memory B cells selected for the expression of somatically mutated, high-affinity antibodies in the T cell-dependent germinal center (GC) reaction. A puzzling observation has been that the memory B cell compartment also contains cells expressing unmutated, low-affinity antibodies. Using conditional Bcl6 ablation, we demonstrate that these cells are generated through proliferative expansion early after immunization in a T cell-dependent but GC-independent manner. They soon become resting and long-lived and display a novel distinct gene expression signature which distinguishes memory B cells from other classes of B cells. GC-independent memory B cells are later joined by somatically mutated GC descendants at roughly equal proportions and these two types of memory cells efficiently generate adoptive secondary antibody responses. Deletion of T follicular helper (Tfh) cells significantly reduces the generation of mutated, but not unmutated, memory cells early on in the response. Thus, B cell memory is generated along two fundamentally distinct cellular differentiation pathways. One pathway is dedicated to the generation of high-affinity somatic antibody mutants, whereas the other preserves germ line antibody specificities and may prepare the organism for rapid responses to antigenic variants of the invading pathogen
Crystal structure, site selectivity, and electronic structure of layered chalcogenide LaOBiPbS3
We have investigated the crystal structure of LaOBiPbS3 using neutron
diffraction and synchrotron X-ray diffraction. From structural refinements, we
found that the two metal sites, occupied by Bi and Pb, were differently
surrounded by the sulfur atoms. Calculated bond valence sum suggested that one
metal site was nearly trivalent and the other was nearly divalent. Neutron
diffraction also revealed site selectivity of Bi and Pb in the LaOBiPbS3
structure. These results suggested that the crystal structure of LaOBiPbS3 can
be regarded as alternate stacks of the rock-salt-type Pb-rich sulfide layers
and the LaOBiS2-type Bi-rich layers. From band calculations for an ideal
(LaOBiS2)(PbS) system, we found that the S bands of the PbS layer were
hybridized with the Bi bands of the BiS plane at around the Fermi energy, which
resulted in the electronic characteristics different from that of LaOBiS2.
Stacking the rock-salt type sulfide (chalcogenide) layers and the BiS2-based
layered structure could be a new strategy to exploration of new BiS2-based
layered compounds, exotic two-dimensional electronic states, or novel
functionality.Comment: 11 pages, 5 figure
Detection of Base Substitution-Type Somatic Mosaicism of the NLRP3 Gene with >99.9% Statistical Confidence by Massively Parallel Sequencing
Chronic infantile neurological cutaneous and articular syndrome (CINCA), also known as neonatal-onset multisystem inflammatory disease (NOMID), is a dominantly inherited systemic autoinflammatory disease and is caused by a heterozygous germline gain-of-function mutation in the NLRP3 gene. We recently found a high incidence of NLRP3 somatic mosaicism in apparently mutation-negative CINCA/NOMID patients using subcloning and subsequent capillary DNA sequencing. It is important to rapidly diagnose somatic NLRP3 mosaicism to ensure proper treatment. However, this approach requires large investments of time, cost, and labour that prevent routine genetic diagnosis of low-level somatic NLRP3 mosaicism. We developed a routine pipeline to detect even a low-level allele of NLRP3 with statistical significance using massively parallel DNA sequencing. To address the critical concern of discriminating a low-level allele from sequencing errors, we first constructed error rate maps of 14 polymerase chain reaction products covering the entire coding NLRP3 exons on a Roche 454 GS-FLX sequencer from 50 control samples without mosaicism. Based on these results, we formulated a statistical confidence value for each sequence variation in each strand to discriminate sequencing errors from real genetic variation even in a low-level allele, and thereby detected base substitutions at an allele frequency as low as 1% with 99.9% or higher confidence
Extramuscular myofascial force transmission within the rat anterior tibial compartment: Proximo-distal differences in muscle force
Intramuscular connective tissues are continuous to extramuscular connective tissues. If force is transmitted there, differences should be present between force at proximal and distal attachments of muscles. Extensor digitorum longus (EDL), tibialis anterior (TA), and extensor hallucis longus muscles (EHL) were excited simultaneously and maximally. Only EDL length was changed, exclusively by moving the position of its proximal tendon. Distal force exerted by TA + EHL complex was not affected significantly. Proximal and distal EDL isometric force were not equal for most EDL lengths:
Sturmian bases for two-electron systems in hyperspherical coordinates
We give a detailed account of an spectral approach
for the calculation of energy spectra of two active electron atoms in a system
of hyperspherical coordinates. In this system of coordinates, the Hamiltonian
has the same structure as the one of atomic hydrogen with the Coulomb potential
expressed in terms of a hyperradius and the nuclear charge replaced by an angle
dependent effective charge. The simplest spectral approach consists in
expanding the hyperangular wave function in a basis of hyperspherical
harmonics. This expansion however, is known to be very slowly converging.
Instead, we introduce new hyperangular sturmian functions. These functions do
not have an analytical expression but they treat the first term of the
multipole expansion of the electron-electron interaction potential, namely the
radial electron correlation, exactly. The properties of these new functions are
discussed in detail. For the basis functions of the hyperradius, several
choices are possible. In the present case, we use Coulomb sturmian functions of
half integer angular momentum. We show that, in the case of H, the accuracy
of the energy and the width of the resonance states obtained through a single
diagonalization of the Hamiltonian, is comparable to the values given by
state-of-the-art methods while using a much smaller basis set. In addition, we
show that precise values of the electric-dipole oscillator strengths for
transitions in helium are obtained thereby confirming the
accuracy of the bound state wave functions generated with the present method.Comment: 28 pages, 4 figure
The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin α2-deficient congential muscular dystrophy
Mutations in the human laminin α2 (LAMA2) gene result in the most common form of congenital muscular dystrophy (MDC1A). There are currently three models for the molecular basis of cellular pathology in MDC1A: (i) lack of LAMA2 leads to sarcolemmal weakness and failure, followed by cellular necrosis, as is the case in Duchenne muscular dystrophy (DMD); (ii) loss of LAMA2-mediated signaling during the development and maintenance of muscle tissue results in myoblast proliferation and fusion defects; (iii) loss of LAMA2 from the basement membrane of the Schwann cells surrounding the peripheral nerves results in a lack of motor stimulation, leading to effective denervation atrophy. Here we show that the degenerative muscle phenotype in the zebrafish dystrophic mutant, candyfloss (caf) results from mutations in the laminin α2 (lama2) gene. In vivo time-lapse analysis of mechanically loaded fibers and membrane permeability assays suggest that, unlike DMD, fiber detachment is not initially associated with sarcolemmal rupture. Early muscle formation and myoblast fusion are normal, indicating that any deficiency in early Lama2 signaling does not lead to muscle pathology. In addition, innervation by the primary motor neurons is unaffected, and fiber detachment stems from muscle contraction, demonstrating that muscle atrophy through lack of motor neuron activity does not contribute to pathology in this system. Using these and other analyses, we present a model of lama2 function where fiber detachment external to the sarcolemma is mechanically induced, and retracted fibers with uncompromised membranes undergo subsequent apoptosis
Genetic Heterogeneity of Hepatitis C Virus in Association with Antiviral Therapy Determined by Ultra-Deep Sequencing
The hepatitis C virus (HCV) invariably shows wide heterogeneity in infected patients, referred to as a quasispecies population. Massive amounts of genetic information due to the abundance of HCV variants could be an obstacle to evaluate the viral genetic heterogeneity in detail.Using a newly developed massive-parallel ultra-deep sequencing technique, we investigated the viral genetic heterogeneity in 27 chronic hepatitis C patients receiving peg-interferon (IFN) α2b plus ribavirin therapy.Ultra-deep sequencing determined a total of more than 10 million nucleotides of the HCV genome, corresponding to a mean of more than 1000 clones in each specimen, and unveiled extremely high genetic heterogeneity in the genotype 1b HCV population. There was no significant difference in the level of viral complexity between immediate virologic responders and non-responders at baseline (p = 0.39). Immediate virologic responders (n = 8) showed a significant reduction in the genetic complexity spanning all the viral genetic regions at the early phase of IFN administration (p = 0.037). In contrast, non-virologic responders (n = 8) showed no significant changes in the level of viral quasispecies (p = 0.12), indicating that very few viral clones are sensitive to IFN treatment. We also demonstrated that clones resistant to direct-acting antivirals for HCV, such as viral protease and polymerase inhibitors, preexist with various abundances in all 27 treatment-naïve patients, suggesting the risk of the development of drug resistance against these agents.Use of the ultra-deep sequencing technology revealed massive genetic heterogeneity of HCV, which has important implications regarding the treatment response and outcome of antiviral therapy
Association of IFNGR2 gene polymorphisms with pulmonary tuberculosis among the Vietnamese
Interferon-γ (IFN-γ) is a key molecule of T helper 1 (Th1)-immune response against tuberculosis (TB), and rare genetic defects of IFN-γ receptors cause disseminated mycobacterial infection. The aim of the present study was to investigate whether genetic polymorphisms found in the Th1-immune response genes play a role in TB. In our study, DNA samples were collected from two series of cases including 832 patients with new smear-positive TB and 506 unrelated individuals with no history of TB in the general population of Hanoi, Vietnam. Alleles of eight microsatellite markers located around Th1-immune response-related genes and single nucleotide polymorphisms near the promising microsatellites were genotyped. A set of polymorphisms within the interferon gamma receptor 2 gene (IFNGR2) showed a significant association with protection against TB (P = 0.00054). Resistant alleles tend to be less frequently found in younger age at diagnosis (P = 0.011). Luciferase assays revealed high transcriptional activity of the promoter segment in linkage disequilibrium with resistant alleles. We conclude that the polymorphisms of IFNGR2 may confer resistance to the TB development of newly infected individuals. Contribution of the genetic factors to TB appeared to be different depending on age at diagnosis
- …