239 research outputs found

    Cardiovascular Disease Risk Factors and Physical Fitness in Volunteer Firefighters

    Get PDF
    International Journal of Exercise Science 12(2): 764-776, 2019. Forty-seven percent of volunteer firefighter line of duty deaths are caused by cardiovascular events. Aggressive cardiovascular disease (CVD) risk factor reduction and improved physical fitness could reduce CVD mortality within this population. We assessed CVD risk factors and physical fitness in a large cohort of volunteer firefighters to help establish a health and fitness profile of this population, which may serve as evidence for the need to initiate programs aimed at reducing morbidity and mortality caused by CVD in the volunteer fire service. Seventy-four male volunteer firefighters were assessed for eight CVD risk factors and anthropometric characteristics. Physical fitness was assessed via push-ups, sit-ups, and the YMCA step test. Sixty-eight percent of the firefighters had two or more CVD risk factors. The sample was considered obese via body fat percentage (25.3 ± 5.7%), 27% were hypertensive, 30% had hypercholesterolemia, and 46% were sedentary. The average number of sit-ups performed was 27.3 ± 10.5, which was ranked in the 25thpercentile. The average heart rate after the YMCA step test was 160.2 ± 14.6 bpm, which was ranked very poor. The number of CVD risk factors and poor physical fitness in this cohort of volunteer firefighters was noteworthy. Most volunteer firefighters in our sample were at elevated risk for CVD and had inadequate physical fitness. This evidence conveys the need to initiate physical activity and nutrition outreach programs, led by health and fitness professionals, aimed at reducing firefighter morbidity and mortality within the volunteer fire service

    Atmospheric Density Uncertainty Quantification for Satellite Conjunction Assessment

    Full text link
    Conjunction assessment requires knowledge of the uncertainty in the predicted orbit. Errors in the atmospheric density are a major source of error in the prediction of low Earth orbits. Therefore, accurate estimation of the density and quantification of the uncertainty in the density is required. Most atmospheric density models, however, do not provide an estimate of the uncertainty in the density. In this work, we present a new approach to quantify uncertainties in the density and to include these for calculating the probability of collision Pc. For this, we employ a recently developed dynamic reduced-order density model that enables efficient prediction of the thermospheric density. First, the model is used to obtain accurate estimates of the density and of the uncertainty in the estimates. Second, the density uncertainties are propagated forward simultaneously with orbit propagation to include the density uncertainties for Pc calculation. For this, we account for the effect of cross-correlation in position uncertainties due to density errors on the Pc. Finally, the effect of density uncertainties and cross-correlation on the Pc is assessed. The presented approach provides the distinctive capability to quantify the uncertainty in atmospheric density and to include this uncertainty for conjunction assessment while taking into account the dependence of the density errors on location and time. In addition, the results show that it is important to consider the effect of cross-correlation on the Pc, because ignoring this effect can result in severe underestimation of the collision probability.Comment: 15 pages, 6 figures, 5 table

    Astrometry with Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator RR Lyrae

    Get PDF
    We present an absolute parallax and relative proper motion for the fundamental distance scale calibrator, RR Lyr. We obtain these with astrometric data from FGS 3, a white-light interferometer on HST. We find πabs=3.82±0.2\pi_{abs} = 3.82 \pm 0.2 mas. Spectral classifications and VRIJHKT2_2M and DDO51 photometry of the astrometric reference frame surrounding RR Lyr indicate that field extinction is low along this line of sight. We estimate =0.07\pm0.03 for these reference stars. The extinction suffered by RR Lyr becomes one of the dominant contributors to the uncertainty in its absolute magnitude. Adopting the average field absorption, =0.07 \pm 0.03, we obtain M_V^{RR} = 0.61 ^{-0.11}_{+0.10}. This provides a distance modulus for the LMC, m-M = 18.38 - 18.53^{-0.11}_{+0.10} with the average extinction-corrected magnitude of RR Lyr variables in the LMC, , remaining a significant uncertainty. We compare this result to more than 80 other determinations of the distance modulus of the LMC.Comment: Several typos corrected. To appear in The Astronomical Journal, January 200

    Astrometry with The \u3cem\u3eHubble Space Telescope\u3c/em\u3e: A Parallax of the Central Star of the Planetary Nebula NGC 6853

    Get PDF
    We present an absolute parallax and relative proper motion for the central star of the planetary nebula NGC 6853 (the Dumbbell). We obtain these with astrometric data from the Fine Guidance Sensor 3, a white-light interferometer on the Hubble Space Telescope. Spectral classifications and VRIJHKT2M and DDO51 photometry of the stars making up the astrometric reference frame provide spectrophotometric estimates of their absolute parallaxes. Introducing these into our model as observations with error, we find πabs = 2.10 ± 0.48 mas for the DAO central star of NGC 6853. A weighted average with a previous ground-based USNO determination yields πabs = 2.40 ± 0.32. We assume that the extinction suffered by the reference stars nearest (in angular separation and distance) to the central star is the same as for the central star. Correcting for color differences, we find AV = 0.30 ± 0.06 for the central star, hence, an absolute magnitude MV = 5.48. A recent determination of the central star effective temperature aided in estimating the central star radius, R* = 0.055 ± 0.02 R⊙, a star that may be descending to the white dwarf cooling track

    Non-Committing Encryption with Constant Ciphertext Expansion from Standard Assumptions

    Get PDF
    Non-committing encryption (NCE) introduced by Canetti et al. (STOC \u2796) is a central tool to achieve multi-party computation protocols secure in the adaptive setting. Recently, Yoshida et al. (ASIACRYPT \u2719) proposed an NCE scheme based on the hardness of the DDH problem, which has ciphertext expansion O(logλ)\mathcal{O}(\log\lambda) and public-key expansion O(λ2)\mathcal{O}(\lambda^2). In this work, we improve their result and propose a methodology to construct an NCE scheme that achieves constant ciphertext expansion.Our methodology can be instantiated from the DDH assumption and the LWE assumption. When instantiated from the LWE assumption, the public-key expansion is λpoly(logλ)\lambda\cdot\mathsf{poly}(\log\lambda). They are the first NCE schemes satisfying constant ciphertext expansion without using iO or common reference strings. Along the way, we define a weak notion of NCE, which satisfies only weak forms of correctness and security.We show how to amplify such a weak NCE scheme into a full-fledged one using wiretap codes with a new security property

    Precise Masses for Wolf 1062 AB from Hubble Space Telescope Interferometric Astrometry and McDonald Observatory Radial Velocities

    Get PDF
    We present an analysis of astrometric data from FGS 3, a white-light interferometer on {\it HST}, and of radial velocity data from two ground-based campaigns. We model the astrometric and radial velocity measurements simultaneously to obtain parallax, proper motion and component masses for Wolf 1062 = Gl 748 AB (M3.5V). To derive the mass fraction, we relate FGS 3 fringe scanning observations of the science target to a reference frame provided by fringe tracking observations of a surrounding star field. We obtain an absolute parallax πabs=98.0±0.4\pi_{abs} = 98.0 \pm 0.4 milliseconds of arc, yielding {\cal M}_A = 0.379 \pm 0.005{\cal M}_{\sun} and {\cal M}_B= 0.192 \pm 0.003 {\cal M}_{\sun}, high quality component masses with errors of only 1.5%.Comment: 13 pages, 7 figures. To appear in AJ March 200
    corecore