1,764 research outputs found
Supernova Simulations from a 3D Progenitor Model -- Impact of Perturbations and Evolution of Explosion Properties
We study the impact of large-scale perturbations from convective shell
burning on the core-collapse supernova explosion mechanism using
three-dimensional (3D) multi-group neutrino hydrodynamics simulations of an 18
solar mass progenitor. Seed asphericities in the O shell, obtained from a
recent 3D model of O shell burning, help trigger a neutrino-driven explosion
330ms after bounce whereas the shock is not revived in a model based on a
spherically symmetric progenitor for at least another 300ms. We tentatively
infer a reduction of the critical luminosity for shock revival by ~20% due to
pre-collapse perturbations. This indicates that convective seed perturbations
play an important role in the explosion mechanism in some progenitors. We
follow the evolution of the 18 solar mass model into the explosion phase for
more than 2s and find that the cycle of accretion and mass ejection is still
ongoing at this stage. With a preliminary value of 0.77 Bethe for the
diagnostic explosion energy, a baryonic neutron star mass of 1.85 solar masses,
a neutron star kick of ~600km/s and a neutron star spin period of ~20ms at the
end of the simulation, the explosion and remnant properties are slightly
atypical, but still lie comfortably within the observed distribution. Although
more refined simulations and a larger survey of progenitors are still called
for, this suggests that a solution to the problem of shock revival and
explosion energies in the ballpark of observations are within reach for
neutrino-driven explosions in 3D.Comment: 23 pages, 22 figures, accepted for publication in MNRA
On the Maximum Mass of Accreting Primordial Supermassive Stars
Supermassive primordial stars are suspected to be the progenitors of the most
massive quasars at z~6. Previous studies of such stars were either unable to
resolve hydrodynamical timescales or considered stars in isolation, not in the
extreme accretion flows in which they actually form. Therefore, they could not
self-consistently predict their final masses at collapse, or those of the
resulting supermassive black hole seeds, but rather invoked comparison to
simple polytropic models. Here, we systematically examine the birth, evolution
and collapse of accreting non-rotating supermassive stars under accretion rates
of 0.01-10 solar masses per year, using the stellar evolution code KEPLER. Our
approach includes post-Newtonian corrections to the stellar structure and an
adaptive nuclear network, and can transition to following the hydrodynamic
evolution of supermassive stars after they encounter the general relativistic
instability. We find that this instability triggers the collapse of the star at
masses of 150,000-330,000 solar masses for accretion rates of 0.1-10 solar
masses per year, and that the final mass of the star scales roughly
logarithmically with the rate. The structure of the star, and thus its
stability against collapse, is sensitive to the treatment of convection, and
the heat content of the outer accreted envelope. Comparison with other codes
suggests differences here may lead to small deviations in the evolutionary
state of the star as a function of time, that worsen with accretion rate. Since
the general relativistic instability leads to the immediate death of these
stars, our models place an upper limit on the masses of the first quasars at
birth.Comment: 5 pages, 4 figures. Accepted ApJ letter
Evolution and Explosion of Very Massive Primordial Stars
While the modern stellar IMF shows a rapid decline with increasing mass,
theoretical investigations suggest that very massive stars (>100 solar masses)
may have been abundant in the early universe. Other calculations also indicate
that, lacking metals, these same stars reach their late evolutionary stages
without appreciable mass loss. After central helium burning, they encounter the
electron-positron pair instability, collapse, and burn oxygen and silicon
explosively. If sufficient energy is released by the burning, these stars
explode as brilliant supernovae with energies up to 100 times that of an
ordinary core collapse supernova. They also eject up to 50 solar masses of
radioactive Ni56. Stars less massive than 140 solar masses or more massive than
260 solar masses should collapse into black holes instead of exploding, thus
bounding the pair-creation supernovae with regions of stellar mass that are
nucleosynthetically sterile. Pair-instability supernovae might be detectable in
the near infrared out to redshifts of 20 or more and their ashes should leave a
distinctive nucleosynthetic pattern.Comment: 7 pages, including 4 figures; in. proc. MPA/ESO/MPE/USM Joint
Astronomy Conference "Lighthouses of the Universe: The Most Luminous
Celestial Objects and their use for Cosmology
The Supernova Channel of Super-AGB Stars
We study the late evolution of solar metallicity stars in the transition
region between white dwarf formation and core collapse. This includes the
super-asymptotic giant branch (super-AGB, SAGB) stars, which have massive
enough cores to ignite carbon burning and form an oxygen-neon (ONe) core. The
most massive SAGB stars have cores that may grow to the Chandrasekhar mass
because of continued shell-burning. Their cores collapse, triggering a so
called electron capture supernovae (ECSN). From stellar evolution models we
find that the initial mass range for SAGB evolution is 7.5 ... 9.25\msun. We
perform calculations with three different stellar evolution codes to
investigate the sensitivity of this mass range to some of the uncertainties in
current stellar models. The mass range significantly depends on the treatment
of semiconvective mixing and convective overshooting. To consider the effect of
a large number of thermal pulses, as expected in SAGB stars, we construct
synthetic SAGB models that include a semi-analytical treatment of dredge-up,
hot-bottom burning, and thermal pulse properties. This synthetic model enables
us to compute the evolution of the main properties of SAGB stars from the onset
of thermal pulses until the core reaches the Chandrasekhar mass or is uncovered
by the stellar wind. Thereby, we determine the stellar initial mass ranges that
produce ONe-white dwarfs and electron-capture supernovae. The latter is found
to be 9.0 ... 9.25\msun for our fiducial model, implying that electron-capture
supernovae would constitute about 4% of all supernovae in the local universe.
Our synthetic approach allows us to explore the uncertainty of this number
imposed by uncertainties in the third dredge-up efficiency and ABG mass loss
rate. We find for ECSNe a upper limit of ~20% of all supernovae (abridged).Comment: 13 pages, 16 figures, submitted to ApJ, uses emulateap
Nucleosynthesis in Massive Stars With Improved Nuclear and Stellar Physics
We present the first calculations to follow the evolution of all stable
nuclei and their radioactive progenitors in stellar models computed from the
onset of central hydrogen burning through explosion as Type II supernovae.
Calculations are performed for Pop I stars of 15, 19, 20, 21, and 25 M_sun
using the most recently available experimental and theoretical nuclear data,
revised opacity tables, neutrino losses, and weak interaction rates, and taking
into account mass loss due to stellar winds. A novel ``adaptive'' reaction
network is employed with a variable number of nuclei (adjusted each time step)
ranging from about 700 on the main sequence to more than 2200 during the
explosion. The network includes, at any given time, all relevant isotopes from
hydrogen through polonium (Z=84). Even the limited grid of stellar masses
studied suggests that overall good agreement can be achieved with the solar
abundances of nuclei between 16O and 90Zr. Interesting discrepancies are seen
in the 20 M_sun model and, so far, only in that model, that are a consequence
of the merging of the oxygen, neon, and carbon shells about a day prior to core
collapse. We find that, in some stars, most of the ``p-process'' nuclei can be
produced in the convective oxygen burning shell moments prior to collapse; in
others, they are made only in the explosion. Serious deficiencies still exist
in all cases for the p-process isotopes of Ru and Mo.Comment: 53 pages, 17 color figures (3 as separate GIF images), slightly
extended discussion and references, accepted by Ap
Why a Single-Star Model Cannot Explain the Bipolar Nebula of Eta Carinae
I examine the angular momentum evolution during the 1837-1856 Great Eruption
of the massive star Eta Carinae. I find that the new estimate of the mass blown
during that eruption implies that the envelope of Eta Car substantially
spun-down during the 20 years eruption. Single-star models, most of which
require the envelope to rotate close to the break-up velocity, cannot account
for the bipolar nebula (the Homunculus) formed from matter expelled in that
eruption. The kinetic energy and momentum of the Homunculus further constrains
single-star models. I discuss how Eta Car can fit into a unified model for the
formation of bipolar lobes where two oppositely ejected jets inflate two lobes
(or bubbles). These jets are blown by an accretion disk, which requires stellar
companions in the case of bipolar nebulae around stellar objects.Comment: ApJ, in press. New references and segments were adde
Nuclear Aspects of Nucleosynthesis in Massive Stars
Preliminary results of a new set of stellar evolution and nucleosynthesis
calculations for massive stars are presented. These results were obtained with
an extended reaction network up to Bi. The discussion focuses on the importance
of nuclear rates in pre- and post-explosive nucleosynthesis. The need for
further experiments to study specific reactions and nuclear properties (optical
alpha+nucleus potentials) is emphasized.Comment: 6 pages, 2 figures; invited talk, to appear in the Proceedings of the
Int. Conf. "Structure of the Nucleus at the Dawn of the Century", May 2000,
Bologna, Ital
Nucleosynthesis in massive stars revisited
We have performed the first calculations to follow the evolution of all
stable nuclei and their radioactive progenitors in a finely-zoned stellar model
computed from the onset of central hydrogen burning through explosion as a Type
II supernova. Calculations were done for 15, 20, and 25 solar masses Pop I
stars using the most recently available set of experimental and theoretical
nuclear data, revised opacity tables, and taking into account mass loss due to
stellar winds. Here results are presented for one 15 solar masses model.Comment: 4 pages, 1 figure; needs espcrc1.sty; talk at "Nuclei in the Cosmos
2000", Aarhus, Denmark, June 2000; will appear in Nucl. Phys.
Pulsational Analysis of the Cores of Massive Stars and its Relevance to Pulsar Kicks
The mechanism responsible for the natal kicks of neutron stars continues to
be a challenging problem. Indeed, many mechanisms have been suggested, and one
hydrodynamic mechanism may require large initial asymmetries in the cores of
supernova progenitor stars. Goldreich, Lai, & Sahrling (1997) suggested that
unstable g-modes trapped in the iron (Fe) core by the convective burning layers
and excited by the -mechanism may provide the requisite asymmetries.
We perform a modal analysis of the last minutes before collapse of published
core structures and derive eigenfrequencies and eigenfunctions, including the
nonadiabatic effects of growth by nuclear burning and decay by both neutrino
and acoustic losses. In general, we find two types of g-modes: inner-core
g-modes, which are stabilized by neutrino losses and outer-core g-modes which
are trapped near the burning shells and can be unstable. Without exception, we
find at least one unstable g-mode for each progenitor in the entire mass range
we consider, 11 M_{\sun} to 40 M_{\sun}. More importantly, we find that the
timescales for growth and decay are an order of magnitude or more longer than
the time until the commencement of core collapse. We conclude that the
-mechanism may not have enough time to significantly amplify core
g-modes prior to collapse.Comment: 32 pages including 12 color figures and 2 tables, submitted to Ap
Three-dimensional Models of Core-collapse Supernovae From Low-mass Progenitors With Implications for Crab
We present 3D full-sphere supernova simulations of non-rotating low-mass (~9
Msun) progenitors, covering the entire evolution from core collapse through
bounce and shock revival, through shock breakout from the stellar surface,
until fallback is completed several days later. We obtain low-energy explosions
[~(0.5-1.0)x 10^{50} erg] of iron-core progenitors at the low-mass end of the
core-collapse supernova (LMCCSN) domain and compare to a super-AGB (sAGB)
progenitor with an oxygen-neon-magnesium core that collapses and explodes as
electron-capture supernova (ECSN). The onset of the explosion in the LMCCSN
models is modelled self-consistently using the Vertex-Prometheus code, whereas
the ECSN explosion is modelled using parametric neutrino transport in the
Prometheus-HOTB code, choosing different explosion energies in the range of
previous self-consistent models. The sAGB and LMCCSN progenitors that share
structural similarities have almost spherical explosions with little metal
mixing into the hydrogen envelope. A LMCCSN with less 2nd dredge-up results in
a highly asymmetric explosion. It shows efficient mixing and dramatic shock
deceleration in the extended hydrogen envelope. Both properties allow fast
nickel plumes to catch up with the shock, leading to extreme shock deformation
and aspherical shock breakout. Fallback masses of <~5x10^{-3} Msun have no
significant effects on the neutron star (NS) masses and kicks. The anisotropic
fallback carries considerable angular momentum, however, and determines the
spin of the newly-born NS. The LMCCSNe model with less 2nd dredge-up results in
a hydrodynamic and neutrino-induced NS kick of >40 km/s and a NS spin period of
~30 ms, both not largely different from those of the Crab pulsar at birth.Comment: 47 pages, 27 figures, 6 tables; minor revisions, accepted by MNRA
- …
