521 research outputs found

    Gravitino Production Suppressed by Dynamics of Sgoldstino

    Full text link
    In supersymmetric theories, the gravitino is abundantly produced in the early Universe from thermal scattering, resulting in a strong upper bound on the reheat temperature after inflation. We point out that the gravitino problem may be absent or very mild due to the early dynamics of a supersymmetry breaking field, i.e. a sgoldstino. In models of low scale mediation, the field value of the sgoldstino determines the mediation scale and is in general different in the early Universe from the present one. A large initial field value since the era of the inflationary reheating suppresses the gravitino production significantly. We investigate in detail the cosmological evolution of the sgoldstino and show that the reheat temperature may be much higher than the conventional upper bound, restoring the compatibility with thermal leptogenesis.Comment: 23 pages, 3 figures; v2: discussions added and one figure updated, matches version published in JHE

    Novel electronic wave interference patterns in nanographene sheets

    Full text link
    Superperiodic patterns with a long distance in a nanographene sheet observed by STM are discussed in terms of the interference of electronic wave functions. The period and the amplitude of the oscillations decrease spatially in one direction. We explain the superperiodic patterns with a static linear potential theoretically. In the k-p model, the oscillation period decreases, and agrees with experiments. The spatial difference of the static potential is estimated as 1.3 eV for 200 nm in distance, and this value seems to be reasonable in order that the potential difference remains against perturbations, for example, by phonon fluctuations and impurity scatterings. It turns out that the long-distance oscillations come from the band structure of the two-dimensional graphene sheet.Comment: Published as a LETTER in J. Phys.: Condens. Matter; 8 pages; 6 figures; Online version at http://www.iop.org/EJ/S/3/1256/0hJAmc5sCL6d.7sOO.BtLw/abstract/0953-8984/14/3 6/10

    Electronic states of metallic and semiconducting carbon nanotubes with bond and site disorder

    Full text link
    Disorder effects on the density of states in carbon nanotubes are analyzed by a tight binding model with Gaussian bond or site disorder. Metallic armchair and semiconducting zigzag nanotubes are investigated. In the strong disorder limit, the conduction and valence band states merge, and a finite density of states appears at the Fermi energy in both of metallic and semiconducting carbon nanotubes. The bond disorder gives rise to a huge density of states at the Fermi energy differently from that of the site disorder case. Consequences for experiments are discussed.Comment: Phys. Rev. B: Brief Reports (to be published). Related preprints can be found at http://www.etl.go.jp/~harigaya/NEW.htm

    Lower bound of the tensor-to-scalar ratio r∼>0.1r \mathop{}_{\textstyle \sim}^{\textstyle >} 0.1 in a nearly quadratic chaotic inflation model in supergravity

    Full text link
    We consider an initial condition problem in a nearly quadratic chaotic inflation model in supergravity. We introduce shift symmetry breaking not only in the superpotential but also in the Kahler potential. In this model the inflaton potential is nearly quadratic for inflaton field values around the Planck scale, but deviates from the quadratic one for larger field values. As a result, the prediction on the tensor-to-scalar ratio can be smaller than that of a purely quadratic model. Due to the shift symmetry breaking in the Kahler potential, the inflaton potential becomes steep for large inflaton field values, which may prevent inflation from naturally taking place in a closed universe. We estimate an upper bound on the magnitude of the shift symmetry breaking so that inflation takes place before a closed universe with a Planck length size collapses, which yields a lower bound on the tensor-to-scalar ratio, r∼>0.1r \mathop{}_{\textstyle \sim}^{\textstyle >} 0.1.Comment: 11 pages, 6 figure

    R-symmetric Axion/Natural Inflation in Supergravity via Deformed Moduli Dynamics

    Get PDF
    We construct a natural inflation model in supergravity where the inflaton is identified with a modulus field possessing a shift symmetry. The superpotential for the inflaton is generated by meson condensation due to strong dynamics with deformed moduli constraints. In contrast to models based on gaugino condensation, the inflaton potential is generated without RR-symmetry breaking and hence does not depend on the gravitino mass. Thus, our model is compatible with low scale supersymmetry.Comment: 15 page

    Chaotic Inflation with a Fractional Power-Law Potential in Strongly Coupled Gauge Theories

    Get PDF
    Models of chaotic inflation with a fractional power-law potential are not only viable but also testable in the foreseeable future. We show that such models can be realized in simple strongly coupled supersymmetric gauge theories. In these models, the energy scale during inflation is dynamically generated by the dimensional transmutation due to the strong gauge dynamics. Therefore, such models not only explain the origin of the fractional power in the inflationary potential but also provide a reason why the energy scale of inflation is much smaller than the Planck scale.Comment: 5 page
    • …
    corecore