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We construct a natural inflation model in supergravity where the inflaton is identified with a modulus 
field possessing a shift symmetry. The superpotential for the inflaton is generated by meson condensation 
due to strong dynamics with deformed moduli constraints. In contrast to models based on gaugino 
condensation, the inflaton potential is generated without R-symmetry breaking and hence does not 
depend on the gravitino mass. Thus, our model is compatible with low scale supersymmetry.
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1. Introduction

Slow-roll inflation [1,2] is now a standard paradigm in the mod-
ern cosmology. It not only solves the flatness problem and the 
horizon problem [3,4], but it also explains the origin of the large 
scale structure of the universe [5–9]. This paradigm has been sup-
ported by precise measurements of the cosmic microwave back-
ground (CMB) [10–12].

After the announcement by the BICEP2 experiment on the B-
mode polarization [13], models with larger inflaton field values 
than the Planck scale are drawing much attention due to the so-
called Lyth bound [14].1 Such a large field value seems inconsis-
tent with the conventional view of the field theoretic description 
as an effective theory which is believed to be at the best given 
by a series expansion of fields with higher dimensional operators 
suppressed by the Planck scale. In other words, in large field infla-
tion models, any higher dimensional terms of the inflaton potential 
should be somehow under control.

The best way to understand such strict control on the inflaton 
potential would be a shift symmetry of the inflaton [16]. Interest-
ingly, such a candidate of the inflaton with a shift symmetry is 
often provided in string theories as a modulus [17]. We refer to 
the modulus as an axion, although it is not the QCD axion which 
solves the strong CP problem [18–20]. Once we identify the axion 
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1 Models with large inflaton field value are free from the initial condition prob-
lem [15].
http://dx.doi.org/10.1016/j.physletb.2014.11.009
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
as the inflaton, the next task is to generate a potential of the ax-
ion. As a caveat, in the situation where the shift symmetry holds 
at the tree level and is broken by quantum effects, as is often the 
case with axions in superstring theories, the superpotential of the 
axion, and hence, the axion potential, is generated only by non-
perturbative effects [21]. Thus, model construction often requires 
strong gauge dynamics to generate the axion potential.

Along this line, natural inflation models in supergravity have 
been constructed [27–33].2 As a common feature of these mod-
els, the axion potential originates from gaugino condensation in 
strongly coupled gauge theories. As a result, the energy scale of 
the axion potential is proportional to the scale of R symmetry 
breaking, i.e., the gravitino mass. Thus, to explain the magnitude of 
cosmic perturbations, the gravitino mass is required to be as large 
as 1013 GeV, which is incompatible with low scale supersymmetry 
breaking.3

In this letter, we propose to make use of meson condensation 
by strong dynamics with deformed moduli constraints to generate 
the superpotential of the axion/inflaton field.4 As we will show, the 
model possesses an R-symmetry and the inflaton potential does 
not depend on the gravitino mass. Thus, our model is compatible 
with low energy supersymmetry breaking.

2 For inflation models other than natural inflation where inflaton potentials are 
generated dynamically, see Refs. [22–26].

3 In Refs. [34,35], natural inflation models consistent with low scale supersym-
metry breaking are proposed, although the shift symmetry breaking is simply given 
by tree-level superpotentials.

4 The idea of generating axion potential by the meson condensation is suggested 
in Ref. [36].
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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2. Inflaton potential from meson condensation

2.1. Dynamical sector

Let us begin with a brief review on a supersymmetric SP(Nc)

gauge theory with 2(Nc + 1) chiral superfields in the fundamental 
representation, Q i (i = 1 · · ·2(Nc + 1)).5 The vacuum structure of 
classical flat directions, i.e. (Nc + 1)(2Nc + 1) meson fields,

Mij ∝ Q i Q j, (1)

is deformed non-perturbatively. The vacuum expectation values 
(VEVs) of the meson fields obey the so-called deformed quantum 
moduli constraint [37];

P f (Nc+1)
(
Mij) = ΛNc+1. (2)

Here, Λ denotes the dynamical scale of the SP(Nc) gauge inter-
action and P f (· · ·) denotes the Pfaffian.6 We have normalized the 
meson fields Mij so that they have a mass dimension one. As is 
clear from Eq. (2), some of the mesons condensate at the vacuum.

2.2. Axion

Next, let us introduce an axion chiral multiplet T which cou-
ples to the above gauge dynamics via the gauge kinetic function. 
Later on, we will identify the imaginary part of the axion multiplet 
T with the inflaton. To be concrete, we assume that the Kähler po-
tential of the axion multiplet is given by7

K = K
(
T + T †) = 1

2

(
T + T †)2 + · · · , (3)

where the ellipses denotes higher dimensional terms. Here, we 
have assumed that the Kähler potential has a shift symmetry, 
T → T + iα, with α being a real number. We also assume that 
the axion multiplet appears in the gauge kinetic function of the 
SP(Nc) gauge multiplet,

Lgauge = 1

4

∫
d2θ

(
1

g2
+ T

8π2 fa

)
W αWα + h.c., (4)

where a dimensionful constant fa denotes the “decay constant” 
which depends on the origin of the axion multiplet. We assume 
that this coupling is the dominant contribution to the shift sym-
metry breaking of the axion.

In our argument, instead of specifying the origin of the axion 
multiplet, we simply assume that the value of fa is at around the 
so-called string scale, i.e. Mstr � 1017 GeV, which is expected in 
the case of string axions [17]. Through the coupling to the gauge 
kinetic term, the shift symmetry is broken by the non-perturbative 
effects of the SP(Nc) dynamics.

2.3. STEP1

In the presence of the axion multiplet in the kinetic function, 
the effective dynamical scale depends on the axion field, i.e.,

Λeff(T ) = Λexp

[
− 1

2(Nc + 1)

T

fa

]
. (5)

5 In our convention, SP(1) is equivalent to SU(2).
6 We define the Pfaffian of a 2n × 2n antisymmetric matrix, P f (n) , so that the 

symplectic form J , where J = 1n ⊗ iσ2 with 1n being the n × n unit matrix and σ2

being the second Pauli matrix, satisfies P f (n)( J ) = 1.
7 Here, we have chosen the origin of T so that the Kähler potential does not have 

a linear term T + T † .
Accordingly, the above meson condensation in Eq. (2) also depends 
on the axion multiplet, i.e.

P f (Nc+1)
(
Mij) = Λ

Nc+1
eff (T ). (6)

It should be emphasized here that mere condensation of the 
mesons does not lead to a non-trivial potential of the axion multi-
plet, although the meson condensation scale depends on the axion 
multiplet. This feature should be contrasted with the axion poten-
tial generation via the gaugino condensation, where the condensa-
tion leads to a non-trivial potential of the axion multiplet.

2.4. STEP2

To generate a non-trivial axion potential, let us introduce (Nc +
1)(2Nc + 1) singlet fields, Xij = −X ji , which couple to the funda-
mental fields Q i in the same way with the model of dynamical 
supersymmetry breaking developed in Refs. [38,39];

W =
∑

i> j,k>l

λi j,kl X i j Q k Q l. (7)

To make our analysis simple, we hereafter assume that the above 
superpotential possesses a global SP(2(Nc + 1)) symmetry out 
of the maximal flavor SU(2(Nc + 1)) symmetry, and that the 
SP(2(Nc + 1)) singlet direction, Xij ∝ J i j , has the smallest coupling 
to the quarks, i.e.,8

λi j,kl = λ′′ J ik J jl +
(

λ′ − λ′′

2(Nc + 1)

)
J i j Jkl

(∣∣λ′∣∣ <
∣∣λ′′∣∣). (8)

Below the dynamical scale, the tree-level interactions lead to 
effective couplings between the mesons and the singlets,

Weff �
∑

i> j,k>l

λi j,klΛeff(T )Xij Mkl, (9)

where the mesons are subject to the deformed constraint in 
Eq. (6).9 In this effective theory, we see that all the meson fields 
and the singlets get massive at around the VEVs of the mesons,

Mij = Λeff(T ) × J i j, (10)

except for the singlet which corresponds to the global SP(2(Nc +
1)) singlet.10 By inserting this solution to the effective potential, 
we obtain the effective superpotential of the remaining singlet 
field,

Weff � λΛeff(T )2 X � λΛ2e− 1
(Nc+1)

T
fa X, (11)

after integrating out other heavier mesons and singlets.11 Here, we 
have defined

X = 1√
Nc + 1

∑
i> j

J i j Xi j, (12)

λ = 2λ′(Nc + 1)3/2. (13)

As a result, we find that the supersymmetry is broken for a given 
value of T , which leads to a non-trivial potential of the axion field,

8 The following arguments can be extended to generic cases as done in Ref. [26].
9 We may consider the deformed moduli constraint as a consequence of equa-

tions of motions of heavy states such as glueball supermultiplet of SP(Nc). Following 
arguments are not significantly altered even when we treat the deformed moduli 
constraints as the equation of motion of heavy states.
10 One of the meson obtains a mass of O (Λeff) due to the deformed constraint.
11 Mixing between the axion and the mesons is suppressed by Λeff/((Nc + 1) fa)

and hence negligible [36].



354 K. Harigaya et al. / Physics Letters B 739 (2014) 352–356
V eff � |λ|2Λ4e− 1
(Nc+1)

T +T †
fa , (14)

where we have set X = 0.12 Unfortunately, however, the imaginary 
part of the scalar component of T , the axion field, remains flat, 
and hence, this dynamics does not lead to the model of natural 
inflation.

2.5. STEP3

The above failure can be traced back to the remaining shift-
symmetry in the effective potential in Eq. (11) under which X
rotates to absorb the shift of T .13 Therefore, to generate non-trivial 
potential for the imaginary part of the axion, we are lead to add 
a linear term of X which breaks the remaining shift-symmetry ex-
plicitly,

�W = −μ2 X, (15)

where μ is a dimensionful parameter.14 We note that this term 
is consistent with the R-symmetry which we discuss later. In the 
presence of the breaking term, the above dynamics leads to the 
effective potential,

W = λΛ2(e
1

(Nc+1)
T
fa − μ̃2)X, (16)

μ̃2 = μ2

λΛ2
. (17)

In the followings, we take a phase convention of X so that μ̃ is 
real and positive valued. As a result, we obtain an axion potential,

V eff � |λ|2Λ4
((

e
√

2 τ
(Nc+1) fa + μ̃4)

− 2μ̃2e
τ√

2(Nc+1) fa cos

[
φ√

2(Nc + 1) fa

])
, (18)

which lifts up the imaginary part of the axion field. In the above 
expression, we have decomposed the axion field into

T = 1√
2
(τ + iφ). (19)

It should be noted that unlike the model of dynamical super-
symmetry breaking model in [38,39], the model does not break 
supersymmetry spontaneously due to the presence of T , where the 
supersymmetry vacuum is at

e
τ√

2(Nc+1) fa � μ̃2, φ = 0. (20)

At around this vacuum, both the axion and its real field counter-
part obtain the same mass,

12 Here, it should be noted that the scalar component of X is stabilized to X = 0
due to a large positive mass of the scalar component, �m2

X ∼ λ4 H2
inf M2

Pl/Λ
2
eff , gen-

erated by perturbative corrections [40]. In the limit of a small dynamical scale, the 
mass of the scalar component is far larger than the Hubble scale and the scalar 
component decouples during inflation. Thus, X can be identified with a nilpotent 
chiral superfield discussed in Ref. [41]. In our model, however, �m2

X vanishes and 
the scalar component becomes light after inflation. The chiral multiplet X becomes 
a mass partner of the inflaton and is relevant for the decay of the inflaton.
13 Accordingly, the fundamental fields also rotate under the remaining symmetry 

which makes the original shift symmetry free of the anomaly, and hence, one linear 
combination of the phases remains as a massless axion.
14 If we extend the definition of the shift symmetry so that X rotates non-trivially, 

we may add a term �W ′ = ecT X with an appropriate coefficient c, which is in 
general broken by the anomaly of the SP(Nc) gauge interaction. With such a term, 
we obtain a different inflaton potential, although we do not pursue this possibility 
in this paper.
m2 = μ4

(Nc + 1)2 f 2
a

. (21)

It should be also noted that the resultant scalar potential does not 
show the runaway behavior as seen in Eq. (14).

Now, let us assume that the real part of the axion field is fixed 
to its supersymmetric vacuum value, while allowing the axion field 
being away from its vacuum value, i.e. φ 
= 0. In this case, the su-
perpotential Eq. (17) is reduced to

W = √
2μ2(e

1
(Nc+1)

iφ√
2 fa − 1

)
X, (22)

where φ should be understood as not a chiral field but a constant. 
It should be noted that our model has the same structure as the 
“Model 1” in Ref. [34], and hence, our model provides an ultravio-
let completion to their model.

As a result, along the lines of the chaotic inflation model with 
shift symmetry in [16,34], the axion field obtains a non-trivial po-
tential through the F -term contribution of X which leads to

V eff � 2μ4
(

1 − cos

[
φ

feff

])
. (23)

Here, we have defined an effective decay constant,

feff = √
2(Nc + 1) fa. (24)

It should be noted that the effective decay constant is required to 
be larger than the Planck scale to satisfy the slow-roll conditions 
in natural inflation. For fa = O (Mstr) = O (1017) GeV, the effective 
decay constant is larger than the Planck scale if Nc = O (10).15

In this way, we find that the model with meson condensation 
leads to the inflaton potential which is appropriate for natural in-
flation. For recent discussion on the consistency of natural inflation 
with CMB data, we refer e.g. Ref. [43].

2.6. Required tuning

We clarify how feasible it is to assume that the real part of τ
is fixed to a desirable position in Eq. (20). For that purpose, let us 
first estimate the mass of the real part of the axion around the 
field value in Eq. (20), which is given by,

m2
τ = 4μ4

f 2
eff

� 4μ4

f 2
eff

φ2

M2
PL

� H2
inf, (25)

where H inf denotes the Hubble parameter during inflation. Thus, 
the real part of the axion is not fixed by the superpotential cou-
pling to X , and hence, we need to have the axion coupling to X in 
the Kähler potential which is in general given by,

�K = X† X

M2
PL

(√
2c1M P L

(
T + T †) + c2

(
T + T †)2

/2 + · · ·), (26)

where c1,2 are O (1) coefficients. With these terms, the real part of 
the axion field is fixed to

τ∗ � c1

1 − c2
MPL, (27)

where we have assumed |c1| � 1, for simplicity. In general, this 
field value is expected to be far away from the vacuum position in 
Eq. (20).

15 Enhancement of the effective decay constant in the inflaton potential by a 
large Nc is pointed out in Refs. [32,33,42]. In the view point of the “Phase Lock-
ing Mechanism” proposed in Refs. [35], the enhanced decay constant is understood 
by hierarchical charges between the phase of X and φ under the remaining shift 
symmetry discussed at the beginning of this subsection, and the breaking of the 
remaining shift symmetry by the superpotential term in Eq. (15).
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If the real part of the axion field is fixed at far away from the 
vacuum position, the axion stays at τ∗ , and never goes back to the 
vacuum position after inflation since the effective mass of the real 
part of the axion around τ∗ is much larger than the one in Eq. (25). 
Hence, inflation never ends due to the non-vanishing potential en-
ergy at τ∗ even for φ = 0, i.e.

V eff � |λ|2Λ4(e
τ√

2(Nc+1) fa − μ̃2)2 
= 0. (28)

Thus, in order to avoid this problem, we need to tune the value 
of μ, so that

e
τ∗√

2(Nc+1) fa = μ̃2(1 + δ) (δ � 1). (29)

With this tuning, the inflaton potential along τ∗ is given by

V eff � 2μ4(1 + δ)

(
1 + δ2

2
− cos

[
φ√

2(Nc + 1) fa

])
. (30)

By remembering that the mass of τ around τ∗ is given by,

m2
τ∗(φ) � (1 − c2)V eff(φ)

M2
PL

, (31)

we find that the axion field goes back to the vacuum position well 
after inflation, i.e. φ � 0 as long as

m2
τ > m2

τ∗(φ � 0) � (1 − c2)μ
4δ2

M2
PL

. (32)

To satisfy the above condition, we find that we need tuning be-
tween parameters,

δ <
4M2

PL

(1 − c2) f 2
eff

. (33)

2.7. Energy scale of parameters

Here, we summarize the energy scale of parameters in our 
model. The observed magnitude and the spectral index of the cur-
vature perturbation require that [43]

feff > 5MPl,
μ2

feff
∼ 10−5MPl. (34)

The dynamical scale of the SP(Nc +1) gauge theory during inflation 
is

Λ(τ∗)2 � λ−1μ2 ∼ 10−5λ−1 feffMPl. (35)

The Hubble scale during inflation is given by

H2
inf ∼ μ4φ2

M2
Pl f 2

eff

∼ 10−10φ2. (36)

Note that the dynamical scale is larger than the Hubble scale 
as long as φ2 < 105λ−1 feffMPl. Thus, the Hubble induced masses 
of quarks Q i are negligible and hence does not affect the gauge 
dynamics.

2.8. R-symmetry

Finally, we note that the R-symmetry is preserved in our 
model. The R-charge assignment is X(2), Q i(0) and T (0). The 
R-symmetry is free from the gauge anomaly of the SP(Nc), and 
hence not explicitly broken by the strong dynamics of the SP(Nc)

gauge theory. Also, since the scalar component of X is fixed to its 
origin, the R-symmetry is also not spontaneously broken. Thus, the 
inflaton sector does not break the R-symmetry, and hence the in-
flation scale is not related with the gravitino mass. Our model is 
compatible with low scale supersymmetry.

We stress that the R-symmetry is important for stable infla-
ton dynamics. If the R-symmetry is broken during inflation, the 
negative contribution to the inflaton potential is significant and 
the inflaton may be destabilized toward far from the origin. In 
our model, since the R-symmetry is preserved during inflation, the 
negative contribution is absent.

We have made use of meson condensation to generate the infla-
ton potential. As is pointed out in Ref. [44], the mechanism can be 
applied to moduli fixing. Since moduli are fixed in an R invariant 
way, masses of moduli can be far larger than the gravitino mass. 
Thus, moduli fixing by meson condensation is free from destabi-
lization of moduli during inflation by Hubble induced potentials.

3. Summary and discussion

In this letter, we have proposed a natural inflation model in 
supergravity where the axion potential is generated by meson 
condensation due to strong dynamics with deformed moduli con-
straints. In contrast to models based on gaugino condensation, our 
model possesses an unbroken R-symmetry and hence the inflaton 
potential does not depend on the gravitino mass. Thus, our model 
is compatible with low scale supersymmetry.

In the above analysis, we have assumed one axion field. It is 
easy to extend our model to multi-axion cases. For example, let us 
consider two axions T and S . We couple them to two gauge the-
ories via gauge kinetic functions and assume that gauge theories 
are in meson condensation phases. By fixing mesons in the same 
way as the above analysis, we obtain the effective super potential,

Weff = XΛ2
(

exp

[
T

f T
+ S

f S

]
− μ̃2

)

+ X ′Λ′ 2
(

exp

[
T

f ′
T

+ S

f ′
S

]
− μ̃′ 2

)
, (37)

where X and X ′ are singled fields corresponding to that in Eq. (11)
for two gauge theories, and Λ(′) , f (′)

T , f (′)
S and μ̃(′) are constants. 

If f T / f S � f ′
T / f ′

S , a linear combination of T and S works as an 
inflaton with an effective decay constant much larger than f (′)

T and 
f (′)

S [29].
We have assumed the global SP(2(Nc + 1)) symmetry to sim-

plify our analysis. Without the symmetry, the VEVs of mesons are 
not given by Eq. (10), but generic ones which depend on constants 
λs and μ2s. After integrating out heavy mesons and singlets, the 
effective superpotential is given by Eq. (11), but λ, μ̃2 and Λ in 
general depends on T . As a result, the inflaton potential is not 
given by a simple cosine form. It is interesting if deviation from 
the cosine form is observed.

Let us comment on decay of the inflaton. The inflaton does 
not possess any charges under some linearly realized symmetry. 
Thus, the inflaton in general decays into standard model particles 
through its linear terms in the Kähler potential or gauge kinetic 
functions [45,46].

The inflaton also decays into supersymmetry breaking sector 
fields, which may lead to the overproduction of gravitinos [45–50]. 
The overproduction can be avoided if masses of supersymmetry 
breaking sector fields are large enough, so that the decay mode is 
kinematically forbidden [51].16 As is discussed in Ref. [52], the su-
persymmetry breaking scale may have a lower bound. It may be 

16 The inflaton also decays into a pair of gravitinos through the mixing between 
the inflaton and a scalar component of the supersymmetry breaking field. This de-
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interesting that the large supersymmetry breaking scale assumed 
in the pure gravity mediation [53–55] is naturally explained in this 
way.
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