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Models of chaotic inflation with a fractional power-law potential are not only viable but also testable
in the foreseeable future. We show that such models can be realized in simple strongly coupled
supersymmetric gauge theories. In these models, the energy scale during inflation is dynamically
generated by the dimensional transmutation due to the strong gauge dynamics. Therefore, such models
not only explain the origin of the fractional power in the inflationary potential but also provide a reason
why the energy scale of inflation is much smaller than the Planck scale.
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1. Introduction

Cosmic inflation [1] is a very successful paradigm of modern
cosmology which explains the origin of the anisotropies of the Cos-
mic Microwave Background (CMB) as well as of the Large Scale
Structure of the Universe [2,3]. At present, a realistic and complete
theory of inflation is, however, still pending and hence, inflation-
ary model building remains one of the most important tasks of
particle physics and cosmology.

Among the various classes of inflation models proposed so
far, the chaotic inflation scheme [4] is one of the most attrac-
tive classes since it can realize an inflationary expansion even in
the presence of large quantum fluctuations at the Planck time.
Moreover, the large field values typically encountered in models
of chaotic inflation imply a large contribution from gravitational
waves to the CMB power spectrum [5], rendering these models
testable in the foreseeable future. However, according to the pre-
cise observations of the CMB anisotropies, the simplest versions
of chaotic inflation, i.e. the models with a quadratic potential or
a quartic potential, are now somewhat disfavored [6]. With the
forthcoming data provided by the Planck satellite experiment [7],
the constraints on those simplest versions will be improved upon.

In light of this situation, a more general version of chaotic infla-
tion has been gathering attention, in which the inflaton potential
comes with a fractional power. As analyzed in Refs. [8], the models
of chaotic inflation with a fractional power-law potential are more
favored than the simplest versions of chaotic inflation. Despite
such successes, these models, however, lack a firm field theoret-
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ical foundation, which apparently seems difficult to be achieved
from regular field theories.1

In this Letter, we show that such fractional power-law chaotic
inflation models can be realized in simple strongly coupled super-
symmetric gauge theories. There, the energy scale during inflation
is generated by the dimensional transmutation due to the strong
gauge dynamics. Thus, these models not only explain the origin of
the fractional power in the inflationary potential but also provide
a reason why the energy scale of inflation is much smaller than
the Planck scale.2

The organization of the Letter is as follows. First, we derive
the fractional power-law potential for the inflaton in strongly cou-
pled gauge theories. Next, we discuss distortions of the inflaton
potential due to supergravity contributions. Then, we outline the
phenomenology of chaotic inflation with the dynamically gener-
ated potential and summarize its observational consequences. The
final section is devoted to conclusions and discussion.

2. Dynamical generation of the inflaton potential

Let us discuss how the fractional power-law potential of the
inflaton is generated dynamically. First, we consider an SP(N) su-
persymmetric gauge theory3 with 2(N +2) chiral superfields in the
fundamental representation, Q I (I = 1 · · · 2(N + 2)). Besides the

1 A recipe for embedding chaotic inflation with a fractional power-law potential
into supergravity is provided in Refs. [9,10]; see also Ref. [11], in which a fractional
power-law potential is obtained from a running kinetic term for the inflaton. For
fractional power-law potentials derived in string theories, see Ref. [12].

2 For examples of models in which the scale of inflation is generated dynamically,
see Refs. [13].

3 We use the convention where SP(1) is SU(2).
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fundamental representations, we also introduce (N + 2)(2N + 3)

gauge-singlet chiral superfields ZI J (= −Z J I ) which couple to the
fundamental representations in the superpotential via

W = 1

2
λI JZI J Q I Q J , (1)

with coupling constants λI J . It should be noted that all the quan-
tum moduli, Q I Q J , are lifted by the couplings to the gauge sin-
glets Z I J .

For a later purpose, we decompose the above fields into,

Zij = ZI J=i j, Q i = Q I=i,

Ti = ZI J=i(2N+3), P = Q I=2N+3,

T̄ i = ZI J=i(2N+4), P̄ = Q I=2N+4,

S = ZI J=(2N+3)(2N+4), (2)

where i, j = 1 · · ·2(N + 1). In terms of these fields, the above su-
perpotential is now rewritten as

W = 1

2
λZij Q i Q j + λT Ti Q i P + λT̄ T̄ i Q i P̄ − λS S P P̄ . (3)

We have assumed λi j = λ for simplicity and we also assume that
λT ,T̄ are larger than λ in the following. The sign convention for λS

is just for later convenience. As we will show, the scalar potential
for S generated by the strong dynamics features a fractional power
and eventually plays the role of the inflaton potential.

To see how the scalar potential is generated, let us remember
that the SP(N) gauge theory with 2(N + 2) fundamental represen-
tations exhibits the so-called s-confinement [14,15] at low energies
below the dynamical scale Λ. In this phase, the model is well de-
scribed by the composite fields, M ∝ Q Q , M P ∝ Q P , M P̄ ∝ Q P̄
and M P P̄ ∝ P P̄ [14], which may be assembled in the same way in
an antisymmetric matrix M as the gauge singlets Z , T , T̄ , and S
are assembled in the antisymmetric matrix Z . Their effective su-
perpotential is given by4

Weff = Pf (N+2)(M)

Λ(N+2)−3
+ 1

2
λΛZij M

ij + λT ΛTi M
i
P + λT̄ ΛT̄ i M

i
P̄

− λSΛS M P P̄ . (4)

The first term is the non-perturbative potential generated by the
s-confinement.5 The other four terms in Eq. (4) can be regarded
as mass-mixing operators between the composite fields and the
gauge singlets, inducing supersymmetric masses of O(λΛ,λT Λ,

λT̄ Λ,λSΛ), respectively. The effective superpotential shows that
the model possesses a supersymmetric vacuum in which all of the
M ’s and singlets vanish. That is, as expected, there is a vacuum
with vanishing vacuum energy.

Now, let us consider an effective potential for S �= 0 and X(∝
J i j Zi j) �= 0 around the vacuum. Here, J i j are the components of
the symplectic form J = 1n ⊗ iσ2. Notice that the mesons M P and
M P̄ are still fixed at

M P = 0, M P̄ = 0, (5)

since we have assumed λT ,T̄ � λ. Thus, the effective potential in
Eq. (4) is reduced to

4 It should be noted that we have neglected O (1) differences between the λ’s in
Eq. (3) and the ones in Eq. (4) due to non-perturbative effects. We also assume that
the composite fields in M are close to the canonically normalized ones.

5 In this Letter, we define the Pfaffian of a 2n × 2n antisymmetric matrix, Pf (n) ,
so that the symplectic form J , where J = 1n ⊗ iσ2 with 1n being the n × n unit
matrix and σ2 the second Pauli matrix, satisfies Pf (n)( J ) = 1.
Weff = M P P̄

(
Pf (N+1)(M)

Λ(N+2)−3
− λSΛS

)
+ 1

2
λΛZij M

ij.

The first term leads to the so-called deformed moduli constraint
on the moduli space of the SP(N) gauge theory with 2(N + 1)

fundamental representations [14]. Therefore, for a given non-
vanishing S , the above model is nothing but the dynamical su-
persymmetry breaking model of Ref. [16]. By solving the quantum
deformed constraint for S �= 0, we obtain

Mij = Λ

(
λS S

Λ

) 1
N+1

× J i j, (6)

which leads to

Weff = λ(N + 1)1/2Λ2
(

λS S

Λ

) 1
N+1

X, (7)

where X is defined by X = Zij J i j/(2(N + 1)1/2). Hence, for S �= 0,
supersymmetry is broken by the F -component of X , which leads
to a scalar potential for S ,

V � λ2(N + 1)Λ4
(

λS |S|
Λ

) 2
N+1

. (8)

As promised, we find that the scalar component of the singlet S
obtains a fractional power-law potential,

V ∝ |S|p. (9)

Its power is solely determined by the size of the SP(N) gauge
group,

p = 2

N + 1
. (10)

In the above analysis, we have tacitly assumed that the field
value of S is around or below the dynamical scale, i.e. λS S � Λ.
The above scalar potential is, however, also obtained for λS S � Λ.
For that purpose, let us remember that P and P̄ are heavier than
the dynamical scale for λS S � Λ and decouple perturbatively.
Thus, the effective theory below λS S consists of the SP(N) gauge
theory with 2(N + 1) fundamental representations whose effective
dynamical scale is given by [17]

Λeff = Λ ×
(

λS |S|
Λ

) 1
2(N+1)

. (11)

Then, since the effective theory below λS S is again the dynamical
supersymmetry breaking model, we again reach the effective su-
perpotential in Eq. (7). Therefore, again, supersymmetry is broken
by the F -component of X at S �= 0, which again leads to6

V � λ2(N + 1)Λ4
(

λS |S|
Λ

) 2
N+1

. (12)

In the following sections, we assume that S plays the role of the
inflaton. After inflation, S reaches its origin, which leads to the
restoration of supersymmetry.

Before discussing the details of our scenario of chaotic inflation,
let us comment on a seemingly contradictory point concerning
the inflaton potential. According to Eq. (4) all fields have masses.

6 The agreement between the powers in the potential in the two different field
regimes is not a coincidence but can be understood by remembering that the ef-
fective superpotential consistent with (anomalous) R-symmetries, holomorphicity
and dimensional analysis should have the form in Eq. (7), regardless of the sizes of
X �= 0 and S �= 0.
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On the other hand, Eq. (8) shows that the potential for S is not
quadratic in S around the origin, but rather features a singular first
derivative. This difference is due to the fact that we have ignored a
non-minimal contribution to the Kähler potential in the derivation
of Eq. (8). When integrating out the meson fields, we have used
the constraint (6), which also generates the following non-minimal
Kähler potential for S ,

δK = 1

2
M†

i j Mij = (N + 1)Λ2
(

λS |S|
Λ

)p

. (13)

For λS S � Λ, this contribution dominates over the canonical
Kähler potential. The potential for the reparametrized field S ′ =√

N + 1Λ(λS S/Λ)p/2, which has a canonical Kähler potential for
λS S � Λ, is then given by

V � λ2Λ2
∣∣S ′∣∣2

, (14)

which is quadratic in S ′ , thus implying that the canonically nor-
malized field S ′ is massive. On the other hand, at larger values
of S , the canonical Kähler potential of S dominates over the non-
canonical one in Eq. (13) and the potential in Eq. (12) is valid after
all.

3. Supergravity contributions

In our model, we apply the above obtained fractional potential
to the chaotic inflation scenario, where the field value of the in-
flaton exceeds the Planck scale MPl. For such a large field value,
we need to carefully examine the supergravity contributions to the
scalar potential, which could change the potential drastically from
the fractional power-law potential. In fact, if we assume, for exam-
ple, a minimal Kähler potential S† S for the inflaton S , the inflaton
potential is modified in supergravity as follows,

V � e|S|2/M2
Pl × λ2(N + 1)Λ4

(
λS |S|

Λ

) 2
N+1

, (15)

which is too steep for chaotic inflation for S � MPl.7

The most attractive way to avoid such supergravity contribu-
tions is to introduce a shift symmetry in the direction of S [18,19],

S → S + ic, c ∈ R (16)

(see also Ref. [9] for recent developments). With this shift symme-
try, the Kähler potential is a function of S + S†,

K = 1

2

∣∣S + S†
∣∣2 + · · · , (17)

and hence, it does not depend on the imaginary component of S ,
(S). Therefore, the imaginary component of S has a fractional
power-law potential even for (S) � MPl, while the real part of
S obtains a Hubble mass term around �(S) = 0. In the follow-
ing,

√
2(S) plays the role of the inflaton in the chaotic inflation

scenario with the dynamically generated fractional power-law po-
tential in Eq. (12).8

One caveat to the above argument is that the shift symmetry is
explicitly broken by the interaction

W ⊃ −λS S P P̄ (18)

7 Even for S < MPl , there is an eta problem. This problem is also avoided by the
solution mentioned below.

8 One may assume R-symmetry with the following charge assignments: Q (0),
P (1), P̄ (1), Z(2), T (1), T̄ (1), and S(0). With these charge assignments, R-symmetry
allows the shift symmetry only for the singlet S , which explains why only the imag-
inary part of S can exceed the Planck scale.
in Eq. (3). With this explicit breaking, the Kähler potential in
Eq. (17) obtains a radiative correction which breaks the symme-
try,

δK ∼ 2Nλ2
S

16π2
|S|2 log

(
μ2

M2
Pl

)
, (19)

where μ is a renormalization scale.9 This breaking term causes
a steep exponential potential of (S) for (S) � MPl unless λS

is small enough. Thus, to avoid a too large breaking of the shift
symmetry, we assume in the following analysis that λS is rather
suppressed.10

Furthermore, we note that in general the mere introduction of
a shift symmetry in the direction of the inflaton field S does not
suffice to protect chaotic inflation from receiving disastrously large
supergravity corrections. In addition we have to require that the
superpotential be of the form W = X f (S) [18,9], where f is an ar-
bitrary holomorphic function of S and X is a gauge singlet that can
be identified as the goldstino superfield responsible for the sponta-
neous breaking of supersymmetry during inflation [10]. Evidently,
the effective superpotential in Eq. (7), which we equally obtained
in the small-S as well as in the large-S regime, is just of the re-
quired form, with X ∝ J i j Zi j playing the role of the goldstino field.
That is why, after supplementing our model with a shift symmetry
in the direction of the inflaton field S , all necessary conditions for
the successful implementation of chaotic inflation into supergrav-
ity are satisfied.

We also note that our scenario is free of (pseudo-) moduli. One
candidate for a modulus is X , which has a flat potential at λX � Λ

and S � MPl in global supersymmetry. In supergravity however,
the canonical Kähler potential for X yields a Hubble induced mass
term, stabilizing X at its origin during inflation. Note that this ar-
gument fails if the Kähler potential contains a term linear in X .
But, assigning a non-zero R charge to X , we are fortunately able
to prevent such a term, cf. footnote 8.

4. Chaotic inflation with a fractional power-law potential

As we have shown, simple strongly coupled gauge dynamics
are able to generate an inflationary potential featuring a frac-
tional power. We have also discussed the shift symmetry of the
model which suppresses the distortions of the inflaton potential
due to the supergravity contributions. Let us now outline the phe-
nomenology of the model, summarize its predictions for the infla-
tionary observables encoded in the CMB power spectrum and, in
relation to that, discuss its testability.

Inflation starts out at an arbitrary initial value of the inflaton
field above the Planck mass S � MPl. At its early stages, i.e. as
long as λS S � Λ, the SP(N) gauge interactions are in the pertur-
bative regime and inflation is characterized by the slow-roll mo-
tion of the inflaton in the effective potential in Eq. (12). Similarly,
we know that at small field values, i.e. when λS S � Λ, the sys-
tem is in the s-confinement phase, in which S and the composite
mesons have masses of O(λI J Λ). In this case the inflaton poten-
tial is given by Eq. (8). In the intermediate regime, where λS S � Λ,
we however lack the ability to precisely calculate the inflaton po-
tential, which is why we do not exactly know how the transition

9 Here, we have assumed that the Kähler potential in Eq. (17) with the shift sym-
metry is defined around the Planck scale.
10 A second reason why we have to assume λS to be small is the fact that the

masses of the P and P̄ quarks, mP = mP̄ � λS S , must be smaller than the Planck
scale at all times, even though S might take huge values, S ∼ 10 · · · 100 MPl , during
inflation. That is, too large λS would entail mP ,mP̄ � MPl at some point during
inflation, causing our approach based on ordinary quantum field theory to break
down.



128 K. Harigaya et al. / Physics Letters B 720 (2013) 125–129
from the large-S to the small-S regime takes place. For instance, it
might be that towards the end of inflation S becomes trapped in a
metastable vacuum at a field value around Λ/λS such that it actu-
ally never reaches the small-S regime. Assuming that the effective
inflaton potential exhibits no such peculiar features around Λ/λS ,
we are led to the conclusion that inflation continues without any
hindrance until the slow-roll conditions become violated at small
values of the inflaton field.

The end of inflation marks the onset of preheating, which pro-
ceeds in a rather unconventional way in our scenario due to the
negative curvature of the inflaton potential. In fact, so far only
small-field and hybrid models of inflation have been studied in
connection with a negatively curved scalar potential, where it was
found that preheating occurs via tachyonic oscillations [20] of the
inflaton field or tachyonic preheating [21], respectively. As for large-
field, i.e. chaotic inflation only the case of a positively curved
inflaton potential, for which preheating occurs via parametric res-
onance [22], has been considered up to now. We presume that in
our large-field model featuring a negatively curved inflaton poten-
tial preheating ends up being a combination of both, tachyonic
inflaton oscillations as well as parametric resonance. The verifi-
cation of this conjecture certainly requires a more comprehensive
and ultimately numerical study.

After inflation the inflaton decays through its coupling to the
Higgs fields Hu and Hd of the supersymmetric standard model in
the Kähler potential, K ⊃ (S + S†)Hu Hd , at a rate

ΓS ∼ M3
S

M2
Pl

, (20)

with M S � λSΛ denoting the inflaton mass.11 Interactions with
standard model gauge multiplets through gauge kinetic functions
[19] contribute to the S decay rate at the same order. Hence, the
inflaton eventually reaches the supersymmetric vacuum, in which
S = M = 0. The rate of the perturbative inflaton decays directly
determines the reheating temperature, TR ∼ √

ΓS MPl, or, using
Eq. (20),

TR ∼ 107 GeV

(
λS

10−4

)3/2(
Λ

1015 GeV

)3/2

. (21)

It is interesting to note that non-perturbative effects, i.e. the
formation and evaporation of Q-balls near the end of inflation
[23], could speed up the decay of the inflaton field, thus leading
to a reheating temperature much higher than in the mere pertur-
bative picture. In principle, the formation of Q-balls is feasible in
our model since our effective inflaton potential is shallower than
a quadratic one. Nonetheless, we suppose that no Q-balls emerge
towards the end of inflation because, owing to its Hubble induced
mass term, the real part of S , �(S), is stabilized at zero. This pre-
sumably renders it impossible to induce inspiraling orbits in S field
space continuously connected to the inflationary trajectory, which
would be a necessary prerequisite for Q-balls to occur [24]. A fur-
ther study of this issue is beyond the scope of this Letter and shall
be carried out elsewhere.

Finally, let us summarize the implications of our fractional
power-law inflaton potential for the CMB observables and discuss
the testability of our model. Given a potential V (S) ∝ Λ4(|S|/Λ)p ,
with p = 2/(N + 1), one finds for the power spectrum Pζ of the
curvature perturbations ζ [3]

11 The same coupling leads to the non-adiabatic production of radiation during
preheating. As it is strongly suppressed, we assume that during preheating most
of the initial vacuum energy is transferred into non-relativistic inflaton particles
and only a small fraction into radiation. This implies in particular that the standard
definition of the reheating temperature is applicable.
Pζ = 1

12π2 p2

(
Λ

MPl

)4−p

(2pNe)
1+p/2, (22)

where Ne is the number of e-foldings. The observational result
Pζ = 2.42 × 10−9 [6] then requires the dynamical scale Λ to be
shortly below the GUT scale,

Λ � 1015 GeV. (23)

The spectral index ns and the tensor-to-scalar ratio r of the curva-
ture perturbations are respectively given by

ns = 1 − p + 2

2Ne
, r = 4p

Ne
. (24)

For Ne = 50 and N � 1, such that 0 < p � 1, we obtain ns =
0.97 · · · 0.98 and r = 0.16/(N + 1), which is consistent with the
recent CMB observations [6]. The Planck experiment is expected
to detect the presence of tensor modes if r > 0.05 [7], that is, if
the inflaton potential is generated by the strong dynamics of an
SP(1) ∼= SU(2) gauge theory. Future experiment such as CMBPol
[25] and LiteBIRD [26], which are expected to reach sensitivities
to r of O(10−3), will detect tensor modes unless the underlying
gauge group is very large, N >O(100).

5. Conclusions and discussion

In this Letter, we have shown that fractional power-law chaotic
inflation models can be realized in simple supersymmetric gauge
theories. In this class of models, the energy scale during inflation
is dynamically generated by the dimensional transmutation due to
the strong gauge dynamics. Therefore, the models not only explain
the origin of the fractional power in the inflationary potential but
also provide a reason why the energy scale of inflation is much
smaller than the Planck scale. We also discussed how well the
model fits together with the current data on the inflationary ob-
servables.

Several comments are in order. In our analysis, we have con-
fined ourselves to models with 2(N + 2) fundamental represen-
tations. One of the reasons for this assumption is that for mod-
els with more fundamental representations the system is in the
so-called conformal window [27], and hence, exhibits conformal
symmetry after inflation. In such cases, the inflaton becomes an
unparticle [28] after inflation, which may change the evolution of
the universe drastically compared to conventional inflaton scenar-
ios. Although such a possibility is intriguing, we do not pursue it
further since it is beyond the scope of this Letter.

In our scenario, we have considered models in which supersym-
metry breaking in the inflaton sector vanishes after inflation. It is,
however, possible that some portion of supersymmetry breaking in
the inflaton sector remains non-vanishing even after inflation, pro-
viding the dominant source of supersymmetry breaking in the true
vacuum. In this case, we can consolidate two well motivated new
physics, supersymmetry breaking and inflation into one model. We
will discuss this possibility elsewhere.
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