462 research outputs found

    Exciton-exciton scattering: Composite boson versus elementary boson

    Full text link
    This paper introduces a new quantum object, the ``coboson'', for composite particles, like the excitons, which are made of two fermions. Although commonly dealed with as elementary bosons, these composite bosons -- ``cobosons'' in short -- differ from them due to their composite nature which makes the handling of their many-body effects quite different from the existing treatments valid for elementary bosons. Due to this composite nature, it is not possible to correctly describe the interaction between cobosons as a potential VV. Consequently, the standard Fermi golden rule, written in terms of VV, cannot be used to obtain the transition rates between exciton states. Through an unconventional expression for this Fermi golden rule, which is here given in terms of the Hamiltonian only, we here give a detailed calculation of the time evolution of two excitons. We compare the results of this exact approach with the ones obtained by using an effective bosonic exciton Hamiltonian. We show that the relation between the inverse lifetime and the sum of transition rates for elementary bosons differs from the one of composite bosons by a factor of 1/2, whatever the mapping from composite bosons to elementary bosons is. The present paper thus constitutes a strong mathematical proof that, in spite of a widely spread belief, we cannot forget the composite nature of these cobosons, even in the extremely low density limit of just two excitons. This paper also shows the (unexpected) cancellation, in the Born approximation, of the two-exciton transition rate for a finite value of the momentum transfer

    Dimensionality dependence of optical nonlinearity and relaxation dynamics in cuprates

    Full text link
    Femtosecond pump-probe measurements find pronounced dimensionality dependence of the optical nonlinearity in cuprates. Although the coherent two-photon absorption (TPA) and linear absorption bands nearly overlap in both quasi-one and two-dimensional (1D and 2D) cuprates, the TPA coefficient is one order of magnitude smaller in 2D than in 1D. Furthermore, picosecond recovery of optical transparency is observed in 1D cuprates, while the recovery in 2D involves relaxation channels with a time scales of tens of picoseconds. The experimental results are interpreted within the two-band extended Hubbard model.Comment: 10 pages, 4 figure

    A Cooper pair light emitting diode

    Get PDF
    We demonstrate Cooper-pair's drastic enhancement effect on band-to-band radiative recombination in a semiconductor. Electron Cooper pairs injected from a superconducting electrode into an active layer by the proximity effect recombine with holes injected from a p-type electrode and dramatically accelerate the photon generation rates of a light emitting diode in the optical-fiber communication band. Cooper pairs are the condensation of electrons at a spin-singlet quantum state and this condensation leads to the observed enhancement of the electric-dipole transitions. Our results indicate the possibility to open up new interdisciplinary fields between superconductivity and optoelectronics.Comment: 5 pages (4 figures

    Semiconductor-cavity QED in high-Q regimes: Detuning effect

    Full text link
    The non-resonant interaction between the high-density excitons in a quantum well and a single mode cavity field is investigated. An analytical expression for the physical spectrum of the excitons is obtained. The spectral properties of the excitons, which are initially prepared in the number states or the superposed states of the two different number states by the resonant femtosecond pulse pumping experiment, are studied. Numerical study of the physical spectrum is carried out and a discussion of the detuning effect is presented.Comment: 7 pages, 8 figure

    Resonant inelastic x-ray scattering study of charge excitations in La2CuO4

    Full text link
    We report a resonant inelastic x-ray scattering study of the dispersion relations of charge transfer excitations in insulating La2_2CuO4_4. These data reveal two peaks, both of which show two-dimensional characteristics. The lowest energy excitation has a gap energy of 2.2\sim 2.2 eV at the zone center, and a dispersion of 1\sim 1 eV. The spectral weight of this mode becomes dramatically smaller around (π\pi, π\pi). The second peak shows a smaller dispersion (0.5\sim 0.5 eV) with a zone-center energy of 3.9\sim 3.9 eV. We argue that these are both highly dispersive exciton modes damped by the presence of the electron-hole continuum.Comment: 5 pages, 3 figure

    Anisotropic Hubbard model on a triangular lattice -- spin dynamics in Ho Mn O_3

    Full text link
    The recent neutron-scattering data for spin-wave dispersion in HoMnO3\rm Ho Mn O_3 are well described by an anisotropic Hubbard model on a triangular lattice with a planar (XY) spin anisotropy. Best fit indicates that magnetic excitations in HoMnO3\rm Ho Mn O_3 correspond to the strong-coupling limit U/t>15U/t > \sim 15, with planar exchange energy J=4t2/U2.5J=4t^2/U \simeq 2.5meV and planar anisotropy ΔU0.35\Delta U \simeq 0.35meV.Comment: 4 pages, 3 figure

    CORRELATION BETWEEN THE CHANGES IN STRUCTURE AND ELECTRICAL RESISTIVITY OF AMORPHOUS METALS

    Get PDF
    Using electron microscopy and electrical resistivity measurements, structural changes in amorphous alloys, which occurred during heating, were studied over a wide temperature range. Ribbons of Fe-B-Si alloy were prepared by quenching liquid alloy on to cold twin rollers rotating at high speed ; several different rotation speeds were used. Amorphous ribbons of Ni_ (P_x B_)_ alloys, where X=0.25, 0.5, 0.75, were made also using one roll speed. Among these ribbons, differences were found in electrical resistivity and its annealing behavior, which depended on the quenching conditions and on the ratio of the contents of two component metalloids. In the system Ni_ (P_x B_)_, it was found that the electrical resistivity of the Ni_ P_ B_ alloy specimen had the highest value. It was also found that the electrical resistivity was increased by the cyclic deformation of the liquid-quenched Co-B-Si amorphous alloy. Differences in thermal and mechanical stability of these alloys suggest that so-called amorphous alloys do not have one definite atomic arrangement but have a variety of arrangements, depending on the conditions of preparation

    Superradiance of low density Frenkel excitons in a crystal slab of three-level atoms: Quantum interference effect

    Full text link
    We systematically study the fluorescence of low density Frenkel excitons in a crystal slab containing NTN_T V-type three-level atoms. Based on symmetric quasi-spin realization of SU(3) in large NN limit, the two-mode exciton operators are invoked to depict various collective excitations of the collection of these V-type atoms starting from their ground state. By making use of the rotating wave approximation, the light intensity of radiation for the single lattice layer is investigated in detail. As a quantum coherence effect, the quantum beat phenomenon is discussed in detail for different initial excitonic states. We also test the above results analytically without the consideration of the rotating wave approximation and the self-interaction of radiance field is also included.Comment: 18pages, 17 figures. Resubmit to Phys. Rev.

    Electrical reduction of perovskite electrodes for accelerating exsolution of nanoparticles

    Get PDF
    This work was supported through the Leading Graduate School Program: Academy for Co-creative Education of Environment and Energy Science (ACEEES) funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT, Japan).Growth of finely dispersed nanocatalysts by exsolution of metal nanoparticles from perovskite oxides under reducing conditions at elevated temperature is a promising approach of producing highly active catalytic materials. An alternative method of exsolution using an applied potential has been recently shown to potentially accelerate the exsolution process of nanoparticles that can be achieved in minutes rather than the hours required in chemical reduction. In the present study, we investigate exsolution of nanoparticles from perovskite oxides of La0.43Ca0.37Ni0.06Ti0.94O3-γ (LCTNi) and La0.43Ca0.37Ni0.03Fe0.03Ti0.94O3-γ (LCTNi-Fe) under applied potentials in carbon dioxide atmosphere. The impedance spectra of single cells measured before and after electrochemical poling at varying voltages showed that the onset of exsolution process occurred at 2 V of potential reduction. An average particle size of the exsolved nanoparticles observed after testing using a scanning electron microscopy was about 30–100 nm. The cells with the reduced electrodes exhibited desirable electrochemical performances not only in pure carbon dioxide (current density of 0.37 A cm−2 for LCTNi and 0.48 A cm−2 for LCTNi-Fe at 1.5 V) but also in dry hydrogen (0.36 W cm−2 for LCTNi and 0.43 W cm−2 for LCTNi-Fe).PostprintPeer reviewe

    Approach to the semiconductor cavity QED in high-Q regimes with q-deformed boson

    Full text link
    The high density Frenkel exciton which interacts with a single mode microcavity field is dealed with in the framework of the q-deformed boson. It is shown that the q-defomation of bosonic commutation relations is satisfied naturally by the exciton operators when the low density limit is deviated. An analytical expression of the physical spectrum for the exciton is given by using of the dressed states of the cavity field and the exciton. We also give the numerical study and compare the theoretical results with the experimental resultsComment: 6 pages, 2 figure
    corecore