4,814 research outputs found

    Alternative Derivation of the Hu-Paz-Zhang Master Equation for Quantum Brownian Motion

    Get PDF
    Hu, Paz and Zhang [ B.L. Hu, J.P. Paz and Y. Zhang, Phys. Rev. D {\bf 45} (1992) 2843] have derived an exact master equation for quantum Brownian motion in a general environment via path integral techniques. Their master equation provides a very useful tool to study the decoherence of a quantum system due to the interaction with its environment. In this paper, we give an alternative and elementary derivation of the Hu-Paz-Zhang master equation, which involves tracing the evolution equation for the Wigner function. We also discuss the master equation in some special cases.Comment: 17 pages, Revte

    Decoherence of Histories and Hydrodynamic Equations for a Linear Oscillator Chain

    Full text link
    We investigate the decoherence of histories of local densities for linear oscillators models. It is shown that histories of local number, momentum and energy density are approximately decoherent, when coarse-grained over sufficiently large volumes. Decoherence arises directly from the proximity of these variables to exactly conserved quantities (which are exactly decoherent), and not from environmentally-induced decoherence. We discuss the approach to local equilibrium and the subsequent emergence of hydrodynamic equations for the local densities.Comment: 37 pages, RevTe

    Comment on the choice of time in a two-component formulation of the Wheeler--DeWitt equation

    Get PDF
    The two-component formalism in quantum cosmology is revisited with a particular emphasis on the identification of time. Its relation with the appearance of imaginary eigenvalues is established. It is explicitly shown how a good choice of the global time prevents this peculiarity.Comment: 8 pages; version accepted for publication in Int. J. Mod. Phys.

    A Closed Contour of Integration in Regge Calculus

    Get PDF
    The analytic structure of the Regge action on a cone in dd dimensions over a boundary of arbitrary topology is determined in simplicial minisuperspace. The minisuperspace is defined by the assignment of a single internal edge length to all 1-simplices emanating from the cone vertex, and a single boundary edge length to all 1-simplices lying on the boundary. The Regge action is analyzed in the space of complex edge lengths, and it is shown that there are three finite branch points in this complex plane. A closed contour of integration encircling the branch points is shown to yield a convergent real wave function. This closed contour can be deformed to a steepest descent contour for all sizes of the bounding universe. In general, the contour yields an oscillating wave function for universes of size greater than a critical value which depends on the topology of the bounding universe. For values less than the critical value the wave function exhibits exponential behaviour. It is shown that the critical value is positive for spherical topology in arbitrary dimensions. In three dimensions we compute the critical value for a boundary universe of arbitrary genus, while in four and five dimensions we study examples of product manifolds and connected sums.Comment: 16 pages, Latex, To appear in Gen. Rel. Gra

    Approximate Decoherence of Histories and 't Hooft's Deterministic Quantum Theory

    Get PDF
    This paper explores the possibility that an exactly decoherent set of histories may be constructed from an approximately decoherent set by small distortions of the operators characterizing the histories. In particular, for the case of histories of positions and momenta, this is achieved by doubling the set of operators and then finding, amongst this enlarged set, new position and momentum operators which commute, so decohere exactly, and which are ``close'' to the original operators. The enlarged, exactly decoherent, theory has the same classical dynamics as the original one, and coincides with the so-called deterministic quantum theories of the type recently studied by 't Hooft. These results suggest that the comparison of standard and deterministic quantum theories may provide an alternative method of characterizing emergent classicality. A side-product is the surprising result that histories of momenta in the quantum Brownian motion model (for the free particle in the high-temperature limit) are exactly decoherent.Comment: 41 pages, plain Te

    Quantum cosmology with a curvature squared action

    Get PDF
    The correct quantum description for a curvature squared term in the action can be obtained by casting the action in the canonical form with the introduction of a variable which is the negative of the first derivative of the field variable appearing in the action, only after removing the total derivative terms from the action. We present the Wheeler-DeWitt equation and obtain the expression for the probability density and current density from the equation of continuity. Furthermore, in the weak energy limit we obtain the classical Einstein equation. Finally we present a solution of the wave equation.Comment: 8 pages, revte

    The exact cosmological solution to the dynamical equations for the Bianchi IX model

    Get PDF
    Quantum geometrodynamics in extended phase space describes phenomenologically the integrated system ``a physical object + observation means (a gravitational vacuum condensate)''. The central place in this version of QGD belongs to the Schrodinger equation for a wave function of the Universe. An exact solution to the ``conditionally-classical'' set of equations in extended phase space for the Bianchi-IX model and the appropriate solution to the Schrodinger equation are considered. The physical adequacy of the obtained solutions to existing concepts about possible cosmological scenarios is demonstrated. The gravitational vacuum condensate is shown to be a cosmological evolution factor.Comment: LaTeX, 14 pages, to be published in Int. J. Mod. Phys.

    The Isaacson expansion in quantum cosmology

    Get PDF
    This paper is an application of the ideas of the Born-Oppenheimer (or slow/fast) approximation in molecular physics and of the Isaacson (or short-wave) approximation in classical gravity to the canonical quantization of a perturbed minisuperspace model of the kind examined by Halliwell and Hawking. Its aim is the clarification of the role of the semiclassical approximation and the backreaction in such a model. Approximate solutions of the quantum model are constructed which are not semiclassical, and semiclassical solutions in which the quantum perturbations are highly excited.Comment: Revtex, 11 journal or 24 preprint pages. REPLACEMENT: A comment on previous work by Dowker and Laflamme is corrected. Utah preprint UU-REL-93/3/1

    Spacetime states and covariant quantum theory

    Full text link
    In it's usual presentation, classical mechanics appears to give time a very special role. But it is well known that mechanics can be formulated so as to treat the time variable on the same footing as the other variables in the extended configuration space. Such covariant formulations are natural for relativistic gravitational systems, where general covariance conflicts with the notion of a preferred physical-time variable. The standard presentation of quantum mechanics, in turns, gives again time a very special role, raising well known difficulties for quantum gravity. Is there a covariant form of (canonical) quantum mechanics? We observe that the preferred role of time in quantum theory is the consequence of an idealization: that measurements are instantaneous. Canonical quantum theory can be given a covariant form by dropping this idealization. States prepared by non-instantaneous measurements are described by "spacetime smeared states". The theory can be formulated in terms of these states, without making any reference to a special time variable. The quantum dynamics is expressed in terms of the propagator, an object covariantly defined on the extended configuration space.Comment: 20 pages, no figures. Revision: minor corrections and references adde

    Relativistic quantum measurement

    Get PDF
    Does the measurement of a quantum system necessarily break Lorentz invariance? We present a simple model of a detector that measures the spacetime localization of a relativistic particle in a Lorentz invariant manner. The detector does not select a preferred Lorentz frame as a Newton-Wigner measurement would do. The result indicates that there exists a Lorentz invariant notion of quantum measurement and sheds light on the issue of the localization of a relativistic particle. The framework considered is that of single-particle mechanics as opposed to field theory. The result may be taken as support for the interpretation postulate of the spacetime-states formulation of single-particle quantum theory.Comment: 9 pages, no figures: Revision: references adde
    • …
    corecore