34,118 research outputs found

    Light hadrons in 2+1 flavor lattice QCD

    Full text link
    This talk will focus on recent results by the MILC collaboration from simulations of light hadrons in 2+1 flavor lattice QCD. We have achieved high precision results in the pseudoscalar sector, including masses and decay constants, plus quark masses and Gasser-Leutwyler parameters from well controlled chiral perturbation theory fits to our data. We also show spectroscopy results for vector mesons and baryons.Comment: To appear in the proceedings of the First Meeting of the APS Topical Group on Hadronic Physics, Fermilab, Batavia, Illinois, Oct. 24-26, 200

    Jet-hadron correlations in STAR

    Full text link
    Advancements in full jet reconstruction have made it possible to use jets as triggers in azimuthal angular correlations to study the modification of hard-scattered partons in the medium created in ultrarelativistic heavy-ion collisions. This increases the range of parton energies accessible in these analyses and improves the signal-to-background ratio compared to dihadron correlations. Results of a systematic study of jet-hadron correlations in central Au-Au collisions at sqrt(s_NN) = 200 GeV are indicative of a broadening and softening of jets which interact with the medium. Furthermore, jet-hadron correlations suggest that the suppression of the associated hadron yield at high-pT is balanced in large part by low-pT enhancement.Comment: 4 pages, 2 figures, proceedings for Quark Matter 201

    Determination of the chiral condensate from 2+1-flavor lattice QCD

    Get PDF
    We perform a precise calculation of the chiral condensate in QCD using lattice QCD with 2+1 flavors of dynamical overlap quarks. Up and down quark masses cover a range between 3 and 100 MeV on a 16^3x48 lattice at a lattice spacing around 0.11 fm. At the lightest sea quark mass, the finite volume system on the lattice is in the epsilon-regime. By matching the low-lying eigenvalue spectrum of the Dirac operator with the prediction of chiral perturbation theory at the next-to-leading order, we determine the chiral condensate in 2+1-flavor QCD with strange quark mass fixed at its physical value as Sigma (MS-bar at 2 GeV) = [242(04)(^+19_-18}) MeV}]^3, where the errors are statistical and systematic, respectively.Comment: 4 pages, 3 figures, errors in table 1 and fig.3 corrected. Published in PR

    Star forming regions of the southern galaxy

    Get PDF
    A catalog of southern dust cloud properties is being compiled to aid in the planning and analysis of radio spectral line surveys in the southern hemisphere. Ultimately, images of dust temperature and column density will be produced. For the interim, a list of the 60 and 100 micron fluxes was prepared for the cores and adjacent backgrounds of 65 prominent dust clouds. Dust temperatures and column densities were derived

    Fluctuation characteristics of the TCV snowflake divertor measured with high speed visible imaging

    Get PDF
    Tangentially viewing fast camera footage of the low-field side snowflake minus divertor in TCV is analysed across a four point scan in which the proximity of the two X-points is varied systematically. The motion of structures observed in the post- processed movie shows two distinct regions of the camera frame exhibiting differing patterns. One type of motion in the outer scrape-off layer remains present throughout the scan whilst the other, apparent in the inner scrape-off layer between the two nulls, becomes increasingly significant as the X-points contract towards one another. The spatial structure of the fluctuations in both regions is shown to conform to the equilibrium magnetic field. When the X-point gap is wide the fluctuations measured in the region between the X-points show a similar structure to the fluctuations observed above the null region, remaining coherent for multiple toroidal turns of the magnetic field and indicating a physical connectivity of the fluctuations between the upstream and downstream regions. When the X-point gap is small the fluctuations in the inner scrape-off layer between the nulls are decorrelated from fluctuations upstream, indicating local production of filamentary structures. The motion of filaments in the inter-null region differs, with filaments showing a dominantly poloidal motion along magnetic flux surfaces when the X-point gap is large, compared to a dominantly radial motion across flux-surfaces when the gap is small. This demonstrates an enhancement to cross-field tranport between the nulls of the TCV low-field-side snowflake minus when the gap between the nulls is small.Comment: Accepted for publication in Plasma Physics and Controlled Fusio
    • …
    corecore