11 research outputs found

    Analysis of sequence variations in the suppressor of cytokine signaling (SOCS)-3 gene in extremely obese children and adolescents

    Get PDF
    BACKGROUND: The suppressor of cytokine signaling (SOCS)-3 is a negative feedback regulator of cytokine signaling and also influences leptin signaling. We investigated association of variations in the coding sequence and promoter region of SOCS3 with extreme obesity in German children and adolescents. METHODS: An initial screen for sequence variations in 181 extremely obese children and adolescents and 188 healthy underweight adults revealed two previously reported single nucleotide polymorphisms (SNPs) in the SOCS3 5' region: -1044 C>A (numbering refers to bases upstream of ATG in exon 2) within a predicted STAT3 binding element and -920 C>A (rs12953258, for numbering, see above). RESULTS: We did not detect significant differences in allele or genotype frequencies for any of these SNPs between the analysed study groups (all nominal p > 0.2). In addition, we performed a pedigree transmission disequilibrium test (PDT) for the SNP -1044 C>A in families comprising 703 obese children and adolescents, 281 of their obese siblings and both biological parents. The PDT revealed no transmission disequilibrium (nominal p > 0.05). CONCLUSION: In conclusion, our data do not suggest evidence for a major role of the respective SNPs in SOCS3 in the pathogenesis of extreme obesity in our study groups

    SUMO wrestling with type 1 diabetes.

    No full text
    Post-translational modification of proteins by phosphorylation, methylation, acetylation, or ubiquitylation represent central mechanisms through which various biological processes are regulated. Reversible covalent modification (i.e. sumoylation) of proteins by the small ubiquitin-like modifier (SUMO) has also emerged as an important mechanism contributing to the dynamic regulation of protein function. Sumoylation has been linked to the pathogenesis of a variety of disorders including Alzheimer's disease (AD), Huntington's disease (HD), and type 1 diabetes (T1D). Advances in our understanding of the role of sumoylation suggested a novel regulatory mechanism for the regulation of immune responsive gene expression. In this review, we first update recent advances in the field of sumoylation, then specifically evaluate its regulatory role in several key signaling pathways for immune response and discuss its possible implication in T1D pathogenesis.Journal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, P.H.S.Reviewinfo:eu-repo/semantics/publishe
    corecore