104 research outputs found

    Random-phase Approximation Treatment Of Edge Magnetoplasmons: Edge-state Screening And Nonlocality

    Full text link
    A random-phase approximation (RPA) treatment of edge magnetoplasmons (EMP) is presented for strong magnetic fields, low temperatures, and integer filling factors \nu. It is valid for negligible dissipation and lateral confining potentials smooth on the scale of the magnetic length \ell_{0} but sufficiently steep that the Landau-level (LL) flattening can be neglected. LL coupling, screening by edge states, and nonlocal contributions to the current density are taken into account. In addition to the fundamental mode with typical dispersion relation \omega\sim q_x \ln(q_{x}), fundamental modes with {\it acoustic} dispersion relation \omega\sim q_x are obtained for \nu>2. For \nu=1,2 a {\bf dipole} mode exists, with dispersion relation \omega\sim q_x^3, that is directly related to nonlocal responses.Comment: Text 12 pages in Latex/Revtex format, 4 Postscript figure

    A Thermodynamically-Based Mesh Objective Work Potential Theory for Predicting Intralaminar Progressive Damage and Failure in Fiber-Reinforced Laminates

    Get PDF
    A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed that matrix microdamage is the dominant damage mechanism in continuous fiber-reinforced polymer matrix laminates, and its evolution is controlled with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Typically, failure evolution (i.e., post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method (FEM) setting. Therefore, consistent character element lengths are introduced into the formulation of the evolution of the three failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs is derived. The theory is implemented into commercial FEM software. Objectivity of total energy dissipated during the failure process, with regards to refinements in the FEM mesh, is demonstrated. The model is also verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared to the experiments

    Defining family business: a closer look at definitional heterogeneity

    Get PDF
    Researchers have used a myriad of different definitions in seeking to explain the heterogeneity of family firms and their unique behavior; however, no widely-accepted definition exists today. Definitional clarity in any field is essential to provide (a) the basis for the analysis of performance both spatially and temporally and (b) the foundation upon which theories, frameworks and models are developed. We provide a comprehensive analysis of prior research and identify and classify 82 definitions of family business. We then review and evaluate five key theoretical perspectives in family business to identify how these have shaped and informed the definitions employed in the field and duly explain family firm heterogeneity. Finally, we provide a conceptual diagram to inform the choice of definition in different research settings

    Environmetrics of synfuels. I. Processing the automated PDP-11 data components for the UMD gasifier facility

    No full text
    This report summarizes the techniques and procedures used to handle automated data collected at the University of Minnesota-Duluth (UMD) campus coal gasification facility. This facility, which is partially funded by the Department of Energy, is being evaluated by scientists at Oak Ridge National Laboratory (ORNL) for its potential health and environmental effects. Automatic data collections and manually collected and sample results data are used for this assessment. A data management project at ORNL handles these and other UMD data for the Gasifiers in Industry Program (GIIP). Specifically, this report documents the procedures developed within the data management project for handling two categories of automated data: (1) process and (2) environmental. The examples included use actual data from the first one and a half years of gasifier operation
    • 

    corecore