10 research outputs found
Time lower bounds for nonadaptive turnstile streaming algorithms
We say a turnstile streaming algorithm is "non-adaptive" if, during updates,
the memory cells written and read depend only on the index being updated and
random coins tossed at the beginning of the stream (and not on the memory
contents of the algorithm). Memory cells read during queries may be decided
upon adaptively. All known turnstile streaming algorithms in the literature are
non-adaptive.
We prove the first non-trivial update time lower bounds for both randomized
and deterministic turnstile streaming algorithms, which hold when the
algorithms are non-adaptive. While there has been abundant success in proving
space lower bounds, there have been no non-trivial update time lower bounds in
the turnstile model. Our lower bounds hold against classically studied problems
such as heavy hitters, point query, entropy estimation, and moment estimation.
In some cases of deterministic algorithms, our lower bounds nearly match known
upper bounds
Overview of the PALM model system 6.0
In this paper, we describe the PALM model system 6.0. PALM (formerly an abbreviation for Parallelized Largeeddy Simulation Model and now an independent name) is a Fortran-based code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. This is a follow-up paper to the PALM 4.0 model description in Maronga et al. (2015). During the last years, PALM has been significantly improved and now offers a variety of new components. In particular, much effort was made to enhance the model with components needed for applications in urban environments, like fully interactive land surface and radiation schemes, chemistry, and an indoor model. This paper serves as an overview paper of the PALM 6.0 model system and we describe its current model core. The individual components for urban applications, case studies, validation runs, and issues with suitable input data are presented and discussed in a series of companion papers in this special issue