328 research outputs found

    White matter microstructure and atypical visual orienting in 7 month-olds at risk for autism

    Get PDF
    pre-printObjective: The authors sought to determine whether specific patterns of oculo-motor functioning and visual orientingcharacterize 7-month-old infants who later meet criteria for an autism spectrum disorder (ASD) and to identify the neural correlates of these behaviors. Method:Data were collected from 97 infants, of whom 16 were high-familial-risk infants later classified as having an ASD, 40 were high-familial-risk infants who did not later meet ASD criteria (high-risk negative), and 41 were low- risk infants. All infants underwent an eye-tracking task at a mean age of 7 months and a clinical assessment at a mean age of 25 months. Diffusion-weighted imaging data were acquired for 84 of the infants at 7 months. Primary outcome measures included average saccadic reaction time in a visually guided saccade procedure and radial diffusivity (an index of white matter organization) in fiber tracts that included corticospinal path-ways and the splenium and genu of the corpus callosum. Results: Visual orienting latencies were longer in 7-month-old infants who ex-pressed ASD symptoms at 25 months compared with both high-risk negative infants and low-risk infants. Visual orienting latencies were uniquely associated with the microstructural organization of the splenium of the corpus callosum in low-risk infants, but this association was not apparent in infants later classified as having an ASD. Conclusions: Flexiblyandef ficientlyorienting to salient information in the environment is critical for subsequent cognitive and social-cognitive development. Atypical visual orienting may represent an early prodromal feature of an ASD, and abnormal functional specialization of posterior cortical circuits directly informs a novel model of ASD pathogenesis

    Efficient Probabilistic and Geometric Anatomical Mapping Using Particle Mesh Approximation on GPUs

    Get PDF
    Deformable image registration in the presence of considerable contrast differences and large size and shape changes presents significant research challenges. First, it requires a robust registration framework that does not depend on intensity measurements and can handle large nonlinear shape variations. Second, it involves the expensive computation of nonlinear deformations with high degrees of freedom. Often it takes a significant amount of computation time and thus becomes infeasible for practical purposes. In this paper, we present a solution based on two key ideas: a new registration method that generates a mapping between anatomies represented as a multicompartment model of class posterior images and geometries and an implementation of the algorithm using particle mesh approximation on Graphical Processing Units (GPUs) to fulfill the computational requirements. We show results on the registrations of neonatal to 2-year old infant MRIs. Quantitative validation demonstrates that our proposed method generates registrations that better maintain the consistency of anatomical structures over time and provides transformations that better preserve structures undergoing large deformations than transformations obtained by standard intensity-only registration. We also achieve the speedup of three orders of magnitudes compared to a CPU reference implementation, making it possible to use the technique in time-critical applications

    Contaminant biotransport by Pacific salmon to Lake Michigan tributaries

    Get PDF
    The Great Lakes are ideal systems for evaluating the synergistic components of environmental change, such as exotic species introductions and legacy pollutants. Introduced Pacific Salmon (Oncorhynchus spp.) represent an intersection of these drivers because they are non-native species of economic importance that bioaccumulate contaminants during the open water phase of their life cycle. Furthermore, Pacific salmon can deliver a significant pulse of contaminated tissue to tributaries during spawning and subsequent death. Thus, salmon represent a key pathway by which contaminants accumulated in Lake Michigan are transported inland to tributaries that otherwise lack point source pollution. Our research has revealed that salmon exhibit basin-specific persistent organic pollutant (POP) and mercury (Hg) concentrations reflecting pollutant inputs from both current and historic sources. Overall, Lake Michigan salmon were more contaminated with POPs and Hg than conspecifics from Lakes Huron or Superior. Consequently, Lake Michigan salmon pose a higher risk and magnitude of contaminant biotransport and transfer. Resident stream fish (e.g., brook trout) sampled from salmon spawning reaches had higher pollutant concentrations than fish sampled from upstream reaches lacking salmon, but the extent of fish contamination varied among lake basins and streams. In general, Lake Michigan tributaries were the most impacted, suggesting a direct relationship between the extent of salmon-derived contaminant inputs and resident fish contaminant levels. Within and among lake basins, contaminant biotransport by salmon is context dependent and likely reflects a suite of ecological characteristics such as species identity and trophic position, dynamics of the salmon run, watershed land-use, and instream geomorphology such as sediment size. We suggest that future management of salmon-mediated contaminant biotransport to stream communities in the Great Lakes basin should consider biological, chemical, and physical factors that constitute the environmental context

    Frontolimbic neural circuitry at 6 months predicts individual differences in joint attention at 9 months

    Get PDF
    Elucidating the neural basis of joint attention in infancy promises to yield important insights into the development of language and social cognition, and directly informs developmental models of autism. We describe a new method for evaluating responding to joint attention performance in infancy that highlights the 9- to 10-month period as a time interval of maximal individual differences. We then demonstrate that fractional anisotropy in the right uncinate fasciculus, a white matter fiber bundle connecting the amygdala to the ventral-medial prefrontal cortex and anterior temporal pole, measured in 6-month-olds predicts individual differences in responding to joint attention at 9 months of age. The white matter microstructure of the right uncinate was not related to receptive language ability at 9 months. These findings suggest that the development of core nonverbal social communication skills in infancy is largely supported by preceding developments within right lateralized frontotemporal brain systems

    Distance Dependence of Electron Transfer Kinetics for Azurin Protein Adsorbed to Monolayer Protected Nanoparticle Film Assemblies

    Get PDF
    The distance dependence and kinetics of the heterogeneous electron transfer (ET) reaction for the redox protein azurin adsorbed to an electrode modified with a gold nanoparticle film are investigated using cyclic voltammetry. The nanoparticle films are comprised of nonaqueous nanoparticles, known as monolayer-protected clusters (MPCs), which are covalently networked with dithiol linkers. The MPC film assembly serves as an alternative adsorption platform to the traditional alkanethiolate self-assembled monolayer (SAM) modified electrodes that are commonly employed to study the ET kinetics of immobilized redox proteins, a strategy known as protein monolayer electrochemistry. Voltammetric analysis of the ET kinetics for azurin adsorbed to SAMs of increasing chain length results in quasi-reversible voltammetry with significant peak splitting. We observed rate constants (k°ET) of 12−20 s−1 for the protein at SAMs of shorter alkanethiolates that decays exponentially (β = 0.9/CH2 or 0.8/Å) at SAMs of longer alkanethiolates (9−11 methylene units) or an estimated distance of 1.23 nm and is representative of classical electronic tunneling behavior over increasing distance. Azurin adsorbed to the MPC film platforms of increasing thickness results in reversible voltammetry with very little voltammetric peaks splitting and nearly negligible decay of the ET rate over significant distances up to 20 nm. The apparent lack of distance dependence for heterogeneous ET reactions at MPC film assemblies is attributed to a two-step mechanism involving extremely fast electronic hopping through the MPC film architecture. These results suggest that MPC platforms may be used in protein monolayer electrochemistry to create adsorption platforms of higher architecture that can accommodate greater than monolayer protein coverage and increase the Faradaic signal, a finding with significant implications for amperometric biosensor design and development

    Splenium development and early spoken language in human infants

    Get PDF
    The association between developmental trajectories of language-related white matter fiber pathways from 6 to 24 months of age and individual differences in language production at 24 months of age was investigated. The splenium of the corpus callosum, a fiber pathway projecting through the posterior hub of the default mode network to occipital visual areas, was examined as well as pathways implicated in language function in the mature brain, including the arcuate fasciculi, uncinate fasciculi, and inferior longitudinal fasciculi. The hypothesis that the development of neural circuitry supporting domain-general orienting skills would relate to later language performance was tested in a large sample of typically developing infants. The present study included 77 infants with diffusion weighted MRI scans at 6, 12 and 24 months and language assessment at 24 months. The rate of change in splenium development varied significantly as a function of language production, such that children with greater change in fractional anisotropy (FA) from 6 to 24 months produced more words at 24 months. Contrary to findings from older children and adults, significant associations between language production and FA in the arcuate, uncinate, or left inferior longitudinal fasciculi were not observed. The current study highlights the importance of tracing brain development trajectories from infancy to fully elucidate emerging brain-behavior associations while also emphasizing the role of the splenium as a key node in the structural network that supports the acquisition of spoken language

    PDEs for tensor image processing

    Get PDF
    Methods based on partial differential equations (PDEs) belong to those image processing techniques that can be extended in a particularly elegant way to tensor fields. In this survey paper the most important PDEs for discontinuity-preserving denoising of tensor fields are reviewed such that the underlying design principles becomes evident. We consider isotropic and anisotropic diffusion filters and their corresponding variational methods, mean curvature motion, and selfsnakes. These filters preserve positive semidefiniteness of any positive semidefinite initial tensor field. Finally we discuss geodesic active contours for segmenting tensor fields. Experiments are presented that illustrate the behaviour of all these methods

    Sex differences associated with corpus callosum development in human infants: A longitudinal multimodal imaging study

    Get PDF
    The corpus callosum (CC) is the largest connective pathway in the human brain, linking cerebral hemispheres. There is longstanding debate in the scientific literature whether sex differences are evident in this structure, with many studies indicating the structure is larger in females. However, there are few data pertaining to this issue in infancy, during which time the most rapid developmental changes to the CC occur. In this study, we examined longitudinal brain imaging data collected from 104 infants at ages 6, 12, and 24 months. We identified sex differences in brain-size adjusted CC area and thickness characterized by a steeper rate of growth in males versus females from ages 6–24 months. In contrast to studies of older children and adults, CC size was larger for male compared to female infants. Based on diffusion tensor imaging data, we found that CC thickness is significantly associated with underlying microstructural organization. However, we observed no sex differences in the association between microstructure and thickness, suggesting that the role of factors such as axon density and/or myelination in determining CC size is generally equivalent between sexes. Finally, we found that CC length was negatively associated with nonverbal ability among females

    A novel method for high-dimensional anatomical mapping of extra-axial cerebrospinal fluid: Application to the infant brain

    Get PDF
    Cerebrospinal fluid (CSF) plays an essential role in early postnatal brain development. Extra-axial CSF (EA-CSF) volume, which is characterized by CSF in the subarachnoid space surrounding the brain, is a promising marker in the early detection of young children at risk for neurodevelopmental disorders. Previous studies have focused on global EA-CSF volume across the entire dorsal extent of the brain, and not regionally-specific EA-CSF measurements, because no tools were previously available for extracting local EA-CSF measures suitable for localized cortical surface analysis. In this paper, we propose a novel framework for the localized, cortical surface-based analysis of EA-CSF. The proposed processing framework combines probabilistic brain tissue segmentation, cortical surface reconstruction, and streamline-based local EA-CSF quantification. The quantitative analysis of local EA-CSF was applied to a dataset of typically developing infants with longitudinal MRI scans from 6 to 24 months of age. There was a high degree of consistency in the spatial patterns of local EA-CSF across age using the proposed methods. Statistical analysis of local EA-CSF revealed several novel findings: several regions of the cerebral cortex showed reductions in EA-CSF from 6 to 24 months of age, and specific regions showed higher local EA-CSF in males compared to females. These age-, sex-, and anatomically-specific patterns of local EA-CSF would not have been observed if only a global EA-CSF measure were utilized. The proposed methods are integrated into a freely available, open-source, cross-platform, user-friendly software tool, allowing neuroimaging labs to quantify local extra-axial CSF in their neuroimaging studies to investigate its role in typical and atypical brain development

    A voxel-wise assessment of growth differences in infants developing autism spectrum disorder

    Get PDF
    Autism Spectrum Disorder (ASD) is a phenotypically and etiologically heterogeneous developmental disorder typically diagnosed around 4 years of age. The development of biomarkers to help in earlier, presymptomatic diagnosis could facilitate earlier identification and therefore earlier intervention and may lead to better outcomes, as well as providing information to help better understand the underlying mechanisms of ASD. In this study, magnetic resonance imaging (MRI) scans of infants at high familial risk, from the Infant Brain Imaging Study (IBIS), at 6, 12 and 24 months of age were included in a morphological analysis, fitting a mixed-effects model to Tensor Based Morphometry (TBM) results to obtain voxel-wise growth trajectories. Subjects were grouped by familial risk and clinical diagnosis at 2 years of age. Several regions, including the posterior cingulate gyrus, the cingulum, the fusiform gyrus, and the precentral gyrus, showed a significant effect for the interaction of group and age associated with ASD, either as an increased or a decreased growth rate of the cerebrum. In general, our results showed increased growth rate within white matter with decreased growth rate found mostly in grey matter. Overall, the regions showing increased growth rate were larger and more numerous than those with decreased growth rate. These results detail, at the voxel level, differences in brain growth trajectories in ASD during the first years of life, previously reported in terms of overall brain volume and surface area
    corecore